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Abstract

A particle of mass M moves in an infinite square well of width L (the “particle in a box”). Classically,

the motion has period L
√

2M/E, which depends upon the initial condition through the energy E.

Quantum mechanically, any wavefunction repeats exactly with period 4ML2/πh̄, independent of the

initial condition. Given this qualitative difference, how can the classical motion possibly be the limit of

the quantal time development? The resolution of this paradox involves the difference between the exact

revival (recurrence) of the wavefunction and the approximate periodicity of expectation values such as

〈x(t)〉. (The latter may recur an odd integral number of times before the full wavefunction recurs.)

The period of the expectation values does depend on the initial condition and can possess the expected

classical limit.

The classical limit of quantal time development, first studied by Ehrenfest [1], is still an area of active
investigation [2, 3]. Much of this research centers on systems with two or more degrees of freedom, where
classical chaos enters the picture [4, 5], and much centers on approximate quantal revivals in complicated
situations [6, 7, 8]. Yet this article will show that even that workhorse of introductory quantum mechanics,
the one-dimensional infinite square well, exhibits surprising features, the elucidation of which contributes to
one’s intuition concerning quantum mechanics and illuminates the more general problems.

The topic of quantal time development in the infinite square well has been treated theoretically by Bluhm,
Kostelecký, and Porter [9], and by Aronstein and Stroud [10]. In these treatments the results flow ultimately
either from the WKB approximation [11] or from a sophisticated Taylor series expansion of the eigenenergies
En as a function of the integer quantum number n. These approaches produce results of great generality.
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In contrast, the approach of this paper applies only to the infinite square well, yet this restriction permits a
far more direct and concrete argument — indeed, the calculations in the body of this paper could be carried
out by a student a few weeks into a standard Junior or Senior level quantum mechanics course.

A decade ago, the topic of this paper would have been of great but purely theoretical interest. Contem-
porary developments in quantum-well nanostructures [12] and in femtosecond pulsed-laser excitation [13]
have, however, rendered these results potentially testable in the laboratory. Indeed, experiments of this type
have already been performed [14, 15].

I. The situation

A particle of mass M moves in an infinite square well of width L, centered on the origin. This system has
energy eigenvalues

En =
π2h̄2

2ML2
n2 = E1n

2 for n = 1, 2, 3, . . . . (1)

Notice that as the energy increases, the separation between energy eigenvalues increases rather than de-
creasing to a continuum as is usual, and as is expected for the classical limit [16]. Thus one is entitled to
suspect some pathology concerning quantal time development in the classical limit. The aim of this article
is to investigate such suspicions.

For future reference, we present the energy eigenfunctions [17]

ηn(x) =

√
2
L

cos
(π
L
nx
)

for n = 1, 3, 5, . . . (2)

ηn(x) =

√
2
L

sin
(π
L
nx
)

for n = 2, 4, 6, . . . (3)

and the matrix elements (obtained through straightforward integration)

〈m|x|n〉 =

 0 if ηn(x) and ηm(x) are of the same parity,
8L
π2

(−1)(m+n+1)/2 mn

(m2 − n2)2
if ηn(x) and ηm(x) are of opposite parity.

(4)

II. The revival paradox

Classical periodicity. It is a trivial matter to show that a classical particle of energy E in the infinite
square well bounces back and forth between the walls with period

Tcl = L
√

2M/E. (5)

Wavefunction revival. Suppose the initial wavefunction is

ψ(x; 0) =
∞∑
n=1

cnηn(x). (6)

2



(Some of the expansion coefficients cn may of course vanish.) This wavefunction evolves in time to

ψ(x; t) =
∞∑
n=1

cne
−iEnt/h̄ηn(x). (7)

Does it ever happen that at some revival time Trev the quantal state represented by ψ(x;Trev) is exactly the
same as the initial state ψ(x; 0)?

Such a revival will happen whenever all of the phase factors e−iEnt/h̄ are equal. (Note that the phase
factors do not all have to all equal one, because the two wavefunctions ψ(x) and e−iϕψ(x) represent the
same quantal state.) That is, it happens whenever

En
h̄
Trev = 2πNn + ϕ for all n such that cn 6= 0. (8)

Here Nn is an integer (positive, negative, or zero) that can vary from one value of n to another, whereas the
time Trev and the phase ϕ must not vary with n.

Use of the eigenenergy result En = E1n
2 gives

Trev =
h̄

E1

[
2π
Nn
n2

+
ϕ

n2

]
. (9)

We will have found a revival if we can make the right-hand side independent of n. Clearly, the right-most
member, ϕ/n2, will be independent of n only when either 1) ϕ = 0 or else 2) only special values of n enter
the superposition. The latter case holds, for example, when initial state is an energy eigenstate, in which
case all times are revival times! (Additional examples are given in appendix B.) Turning to the case ϕ = 0,
the ratio Nn/n2 can be made independent of n by selecting

Nn = (integer)n2, (10)

and the smallest such integer is of course one. We have proven [18]:

Theorem 1: Exact quantal revivals. Any wavefunction in an infinite square well will exactly come
back to itself after a time

Trev =
2πh̄
E1

=
4ML2

πh̄
. (11)

It is also easy to show that:

Theorem 2: Reflection half-way to a revival. After the passage of half a revival time, any wave-
function is reflected about the origin (with a physically irrelevant change of sign):

ψ(x;Trev/2) = −ψ(−x; 0). (12)

The paradox. In classical mechanics, any state comes back to itself after time Tcl = L
√

2M/E, which
depends on the state through the energy E. In quantum mechanics, any state comes back to itself after time
Trev = 4ML2/πh̄, which is independent of state. (In both cases, the state is reflected about the origin after
half a period.) How can the classical result possibly be the limit of the quantal result? In particular, since
a “nearly classical” wavepacket state is just one particular type of quantal state, shouldn’t it have the same
periodicity?
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III. Periodicity of expectation values

The quantal revival theorem gives a time after which the full wavefunction repeats. But experiments never
measure the full wavefunction. If an experimental probe couples to, say, the expected position 〈x(t)〉, then
what matters is the period for that 〈x(t)〉 to repeat, not the period for the full wavefunction to recur. (Other
experiments probe other quantities, such as the expected momentum or the expected force. Many such
quantities are related through Ehrenfest’s theorem [19].) We will find that 〈x(t)〉 can have an approximate
period that is a odd integral fraction of the quantal revival time.

The quantal state evolves in time as

|ψ(t)〉 =
∞∑
n=1

cne
−iEnt/h̄|n〉 (13)

so

〈x(t)〉 = 〈ψ(t)|x|ψ(t)〉

=

[ ∞∑
m=1

c∗me
iEmt/h̄〈m|

]
x

[ ∞∑
n=1

cne
−iEnt/h̄|n〉

]
=

∑
m,n

c∗mcne
i(Em−En)t/h̄〈m|x|n〉

=
∑
m even

∑
n odd

2<e{c∗mcnei(Em−En)t/h̄} 〈m|x|n〉, (14)

where in the last step we used the fact (see equation 4) that 〈m|x|n〉 vanishes when m and n have the same
parity.

In other words, the position 〈x(t)〉 is a Fourier sum of terms with periods of

2πh̄
Em − En

=
2πh̄

E1(m2 − n2)
=

Trev

m2 − n2
. (15)

To make this result concrete, we write down some of these periods:

m = 2 m = 4 m = 6 · · ·
n = 1 Trev/3 Trev/15 Trev/35
n = 3 Trev/5 Trev/7 Trev/27 · · ·
n = 5 Trev/21 Trev/9 Trev/11

...
...

. . .

Thus each term in the Fourier sum has a period smaller than Trev. (In fact, each is an odd integral fraction
of Trev, as m2 − n2 = (m+ n)(m− n) is a product of odd integers and hence odd. The existence of a term
with period an even integral fraction of Trev would result in a violation of theorem 2: “Reflection half-way
to a revival”.)
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For example, if the initial state is

|ψ〉 = c1|1〉+ c2|2〉+ c3|3〉, (16)

where, for simplicity, we take c1, c2, and c3 to be real, then the expected position is

〈x(t)〉 = 2c2c1 cos((E2 − E1)t/h̄)〈2|x|1〉+ 2c2c3 cos((E2 − E3)t/h̄)〈2|x|3〉

=
16L
π2

[
2
9
c2c1 cos

(
2πt
Trev/3

)
− 6

25
c2c3 cos

(
2πt
Trev/5

)]
. (17)

Because 3 and 5 are relatively prime, 〈x(t)〉 is exactly periodic with period Trev. However, if c1 � c3, then
〈x(t)〉 is almost periodic with period Trev/3, whereas if c3 � c1, then it is almost periodic with period
Trev/5. This example shows how 〈x(t)〉 can, depending upon the initial state, approximately cycle several
times before the full wavefunction revives exactly [20].

Let us apply this understanding to a “quasiclassical” initial state, namely any superposition [21] of energy
states n ranging from nC − r to nC + r, with r � nC . If i and j are integers ranging from −r to +r, with i
even and j odd, then the terms in the Fourier sum have periods of

Trev

(nC + i)2 − (nC + j)2
=

Trev

2nC(i− j) + i2 − j2
≈ Trev

2nC(i− j)
. (18)

That is, the periods are approximately

Trev

2nC
,

Trev

2nC(3)
,

Trev

2nC(5)
, · · · , Trev

2nC(2r − 1)
. (19)

But, of course, any function with period T/3 also has period T , so the Fourier sum representing the expected
position 〈x(t)〉 has an overall “position period” of

Tpos ≡
Trev

2nC
. (20)

This position period is, of course, smaller than Trev and unlike Trev it depends on the initial state. If we
define the “central energy” corresponding to the “central eigenstate”, namely

EC = E1n
2
C , (21)

then the position period Tpos becomes

Tpos =
Trev

2
√
EC/E1

=
2πh̄

E12
√
EC/E1

=
πh̄√
E1EC

. (22)

Using the ground-state energy result E1 = π2h̄2/2ML2 (equation 1), the position period becomes

Tpos = L

√
2M
EC

. (23)

All factors of h̄ have vanished, and this corresponds perfectly to

Tcl = L

√
2M
E

, (24)
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the classical result.

Paradox lost.

The above correspondence is the central result of this paper. Notice, first, that its derivation depends
in an essential way on the energy eigenvalues, but does not actually require a knowledge of the energy
eigenfunctions or of the matrix elements 〈m|x|n〉, although knowing these items rendered the derivation
more concrete. Notice also that our result reinforces the old observation [11] that the classical period
corresponds not to

2πh̄
energy eigenvalue

but to
2πh̄

energy eigenvalue spacing
.

The importance of this observation has been underscored in recent years by students of quantum revivals [7,
8, 9, 10], who write the correspondence as

2πh̄∣∣∣∂En∂n

∣∣∣
n=nC

.

Another point is that the classical period Tcl is less than (indeed, considerably less than) the quantal
period Trev. One tends to think of characteristic quantal times as short relative to characteristic classical
times, but the correct idea is that characteristic times for small things are short relative to characteristic
times for large things. When applied to a situation of a particular size, the characteristic quantal time can
be longer than the characteristic classical time.

Finally, this result emphasizes the richness of structure available in in quantum mechanics [22]. A classical
state is described completely by just two numbers: x and p. But a complete description of a quantal state
requires the specification of 〈x〉, 〈p〉, ∆x, ∆p, 〈xp〉, and more. After a time Tcl, the classical state comes
back exactly on itself, while for the quantal state (if it is quasiclassical in the sense of equation 18) only 〈x〉
and 〈p〉 come back (with high accuracy) to their initial values: the other quantities can take on different
values, and don’t need to come back to their initial values until the longer time Trev has passed. Thus many
different quantal states can correspond to the same classical state.

The infinite square well is pathological in several ways. One is that the separation between energy
eigenvalues increases as the energy grows into the supposedly-classical regime. Thus one might suspect some
pathology concerning time development in the classical limit. The revival paradox lends additional weight
to this feeling. This article has shown that, despite these legitimate suspicions, the classical limit of quantal
time development in the infinite square well is safe and sound.

Appendix A. Expected position for a particular initial condition

This appendix considers the time evolution of 〈x(t)〉 for a quasiclassical initial Gaussian wavepacket, and
goes on to uncover, not just the period, but the full triangle-wave character of motion in the classical limit.

6



The classical motion of a particle starting at the origin is a triangle wave of amplitude L/2 and period
Tcl, which has the Fourier series representation

xcl(t) =
4L
π2

∑
n=1,3,5,···

(−1)(n−1)/2

n2
sin
(

2πn
t

Tcl

)
. (25)

Suppose the initial Gaussian is

ψ(x) =
1

4
√

2π
√

∆
e−x

2/4∆2
eikx, (26)

which has 〈x〉 = 0 and ∆x = ∆. For concreteness, we take k positive (i.e. the wavepacket initially moves to
the right). This packet will be quasiclassical if it is thin compared to the width of the well,

∆� L, (27)

and if the initial kinetic energy is high enough. The precise requirement, as we will see in equation (31), is
that

k � L/∆2. (28)

Note that this wavefunction extends beyond the width of the square well; if the thinness condition (27) holds,
this inconsistency is not fatal.

The expansion coefficients for this initial wavefunction are

cn = 〈n|ψ〉

=
1

4
√

2π
√

∆

√
2
L

[∫ +L/2

−L/2
trig

(π
L
nx
)
e−x

2/4∆2
eikx dx

]
(29)

=
1

4
√

2π
√

∆

√
2
L

[∫ +∞

−∞
trig

(π
L
nx
)
e−x

2/4∆2
eikx dx+ LO(e−L

2/8∆2
)
]

where the function “trig(θ)” means cos(θ) when n is odd and sin(θ) when n is even. By virtue of the thinness
condition (27) we ignore the terms of order e−L

2/8∆2
in what follows. The integral is straightforward and

results in

cn = 4
√

2π

√
∆
L

1
{i}

[
e−∆2(k+πn/L)2

± e−∆2(k−πn/L)2
]
, (30)

where {i} means 1 for n odd, i for n even, and where ± means + for n odd, − for n even.

The left exponential term will always be smaller than the right one: in fact, their ratio

e−4π∆2kn/L (31)

is tiny indeed whenever the high-energy condition (28) applies. Thus we drop the left exponential term and
conclude that the expansion coefficients for our quasiclassical initial wavefunction are, to high accuracy,

cn = 4
√

2π

√
∆
L
{i} e−∆2(k−πn/L)2

. (32)
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This expression has a maximum when k−πn/L = 0, whence the eigenstate most prominent in the superpo-
sition has the “central” value

nC ≡ kL/π. (33)

In terms of this definition the high-energy condition (28) reads

nC � (L/∆)2 (34)

and the expansion coefficients are

cn = 4
√

2π

√
∆
L
{i} e−(π∆/L)2(nC−n)2

. (35)

Because of the thinness condition (27) these coefficients spread over a broad range of n, but because of the
high-energy condition (34) the peak of this broad distribution is so far from the origin that the ground-state
coefficient c1 is negligible.

For future use, note that the normalization condition is

1 =
∞∑
n=1

|cn|2 =
√

2π
∆
L

∞∑
n=1

e−2(π∆/L)2(nC−n)2
. (36)

But the summand e−2(π∆/L)2(nC−n)2
is utterly negligible for n = 0,−1,−2, . . ., so the lower summation limit

can be extended down to −∞, and once this is done the summation index can be shifted to n′ = n− nC to
conclude that

1 =
√

2π
∆
L

+∞∑
n′=−∞

e−2(π∆/L)2n′2 , (37)

or, in general, that
+∞∑

n′=−∞
e−2α2n′2 =

1
α

√
π

2
(38)

for sufficiently small values of α.

To employ equation (14) for 〈x(t)〉, we need to find

<e{c∗mcnei(Em−En)t/h̄} (39)

for m even, n odd. Using equation (35), the result is

√
2π

∆
L
e−(π∆/L)2[(nC−m)2+(nC−n)2] sin(E1(m2 − n2)t/h̄). (40)

Then, using equations (40) and (4) in the time evolution equation (14), we have

〈x(t)〉 =
∑
m even

∑
n odd

2<e{c∗mcnei(Em−En)t/h̄} 〈m|x|n〉

=
√

2π
∆
L

16L
π2

∑
m even

∑
n odd

e−(π∆/L)2[(nC−m)2+(nC−n)2] sin(E1(m2 − n2)t/h̄) ×

(−1)(m−n−1)/2 mn

(m2 − n2)2
. (41)
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(We have substituted (−1)(m−n−1)/2 for (−1)(m+n+1)/2, which is legitimate because n is odd.)

Because of the exponential factor, the summand is negligible except when m and n are close to nC . This
inspires the definitions

m′ = m− nC and n′ = n− nC . (42)

In the region where the summand is not negligible, we have

m2 − n2 = (nC +m′)2 − (nC + n′)2 = 2nC(m′ − n′) +m′2 − n′2 ≈ 2nC(m′ − n′) (43)

and
mn

(m2 − n2)2
≈ n2

C

4n2
C(m′ − n′)2

=
1

4(m′ − n′)2
. (44)

Furthermore, we may extend the summation range down to −∞, and shift the summation indices from m

and n to m′ and n′. Assuming that nC is even, this results in

〈x(t)〉 =
√

2π
4∆
π2

∑
m′=0,±2,···

∑
n′=±1,±3,···

e−(π∆/L)2[m′2+n′2] sin
(
E12nC(m′ − n′)t

h̄

)
(−1)(m′−n′−1)/2

(m′ − n′)2
. (45)

(If nC were odd, then m′ would be odd and n′ even.)

Using equation (20), we recognize the argument of the sine function as (2π(m′ − n′)t/Tpos). Also, in a
maneuver of surprising subtlety, we change the summation indices to

j = m′ + n′ and ` = m′ − n′ (46)

where ` ranges over all odd integers and j takes on the values −`, −`± 4, −`± 8, . . . . The result is

〈x(t)〉 =
√

2π
4∆
π2

∑
`=±1,±3,···

∑
j

e−(π∆/L)2[j2+`2]/2 sin
(

2π`t
Tpos

)
(−1)(`−1)/2

`2
, (47)

or

〈x(t)〉 =
√

2π
4∆
π2

∑
`=±1,±3,···

∑
j

e−(π∆/L)2j2/2

 e−(π∆/L)2`2/2 sin
(

2π`t
Tpos

)
(−1)(`−1)/2

`2
. (48)

The normalization-derived result (38) tells us that the sum in square brackets is

∑
j

e−(π∆/L)2j2/2 =
1
4

+∞∑
j=−∞

e−(π∆/L)2j2/2 =
1
4

2L
π∆

√
π

2
, (49)

so

〈x(t)〉 =
2L
π2

∑
`=±1,±3,···

e−(π∆/L)2`2/2 sin
(

2π`t
Tpos

)
(−1)(`−1)/2

`2
. (50)

The same result obtains whether nC is even or odd.

Finally, and for the last time, we use the thinness condition (27) to let all the exponential arguments
tend to zero and all the exponentials tend to one, whence

〈x(t)〉 =
2L
π2

∑
`=±1,±3,···

sin
(

2π`t
Tpos

)
(−1)(`−1)/2

`2
. (51)
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The summand is unchanged if ` is replaced by −` (for ` an odd integer), so

〈x(t)〉 =
4L
π2

∑
`=1,3,5,···

sin
(

2π`t
Tpos

)
(−1)(`−1)/2

`2
. (52)

All references to ∆ have vanished (as long as ∆� L) and we recover the classical result (25).

Appendix B. State-dependent revival times

Theorem 1 (equation 11) gives a universal revival time Trev after which any wavefunction comes back to
itself. But certain special wavefunctions revive at an integer fraction of Trev, as detailed in this appendix.

Theorems 3, 4, and 5 here are easy to prove, so their proofs are not presented. Theorem 6 is more
difficult and more general (indeed, theorems 1, 3, 4, and 5 are all special cases of theorem 6). It is also worth
noting that theorems 1, 3, and 6 rely only upon the fact that the energy eigenvalues are proportional to n2,
and proving them does not require any knowledge of the energy eigenfunctions. Theorems 2, 4, and 5, in
contrast, depend upon the parity of the energy eigenfunctions, although not on their precise form.

Theorem 3: Mock Rabi oscillations. If the wavefunction is a superposition of only two energy
eigenfunctions, namely n and m, then it revives after the shorter time

τn,m =
Trev

m2 − n2
=

2πh̄
Em − En

, (53)

at which time

ψ(x; τn,m) = e−2πin2/(m2−n2)ψ(x; 0) = e−2πim2/(m2−n2)ψ(x; 0). (54)

(Note the physically irrelevant change of phase.)

Theorem 4. If a wavefunction has odd parity, it revives after the passage of time Trev/4:

ψo(x;Trev/4) = ψo(x; 0). (55)

Theorem 5. If a wavefunction has even parity, it revives after the passage of time Trev/8:

ψe(x;Trev/8) = e−iπ/4ψe(x; 0). (56)

Theorem 6. If a wavefunction is a superposition of a finite number energy eigenstates, namely
na, nb, nc, nd, . . . , nz, then its first revival comes at time

τ =
Trev

GCD[n2
b − n2

a, n
2
c − n2

a, n
2
d − n2

a, · · · , n2
z − n2

a]
, (57)

were “GCD” signifies the greatest common divisor.
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Proof of theorem 6: The wavefunction is a superposition of energy eigenstates with energies (listed from
smallest to largest)

Ea, Eb, Ec, Ed, . . . , Ez. (58)

Then the quantal state will recur exactly at a time τ when the phase factors

e−iEaτ/h̄, e−iEbτ/h̄, e−iEcτ/h̄, e−iEdτ/h̄, . . . , e−iEzτ/h̄ (59)

are all equal. We search for the shortest such time.

Analogy: Think of each of the phase factors (59) as a phasor clock with a single hand. Each hand sweeps
out a circle periodically, but the clocks are poorly calibrated so each hand circles with a different period.
Our question is: If the clock hands all start out pointing vertically, how long will it take before they are all
parallel again? Quantal revival, in other words, is just an elaboration upon the old joke that a stopped clock
gives the correct time twice a day.

First we find the shortest time τ` for the two phase factors

e−iEaτ`/h̄ and e−iE`τ`/h̄ (60)

to be equal. This happens when both
Ea
h̄
τ` = 2πNa + ϕ (61)

and
E`
h̄
τ` = 2πN` + ϕ. (62)

Taking the difference gives
E` − Ea

h̄
τ` = 2π(N` −Na), (63)

and the smallest such τ` comes when N` −Na = 1, so

τ` =
2πh̄

E` − Ea
. (64)

This gives the smallest time for clock hands a and ` to be parallel. For all the clock hands to be parallel,
we need a and b to be parallel, and the same for a and c, a and d, and so forth up to a and z. That is, we
need positive integers Nb through Nz such that

Nbτb = Ncτc = Ndτd = · · · = Nzτz. (65)

If these integers have no common factors, then the resulting time is the smallest revival time τ .

Up to this point we have not specified the energies so our results apply equally to any quantal system
with discrete spectrum, not just to the infinite square well. (Indeed, we are only a few lines from a proof of
the general “quantum revival theorem” [6].) We now specialize to the infinite square well case En = E1n

2.

In this situation the revival time for the pair consisting of a and ` is

τ` =
2πh̄

E` − Ea
=

2πh̄
E1(n2

` − n2
a)

=
Trev

n2
` − n2

a

. (66)
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Equation (65) becomes
τ = Nbτb = Ncτc = Ndτd = · · · = Nzτz (67)

or
τ

Trev
=

Nb
n2
b − n2

a

=
Nc

n2
c − n2

a

=
Nd

n2
d − n2

a

= · · · = Nz
n2
z − n2

a

. (68)

If we pick Nb = n2
b − n2

a and so forth, then we come up with τ = Trev. But is there a shorter revival time?
There is if the N` integers so chosen possess a common factor. When that happens, we can divide out this
common factor (the greatest common divisor) to find the minimum revival time

τ =
Trev

GCD[n2
b − n2

a, n
2
c − n2

a, n
2
d − n2

a, · · · , n2
z − n2

a]
, (69)

and the theorem is proved.

In brief, some particular quantum states have revival times less than the universal quantum revival time
Trev, which is the time at which time all quantal states revive. (Clearly the state-specific revival times must
be integral fractions of the universal revival time.)

Lest a misconception arise, however, I emphasize that this phenomena is not responsible for the paradox
at the center of this paper, namely the classical periodicity being less than the universal quantal revival time.
In fact, the quasiclassical tight wavepackets considered just above equation (18) consist of superpositions of
2r+1 adjacent energy eigenstates, and it is easy to prove that for three or more adjacent energy eigenstates,
the GCD of equation (69) is equal to one.
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H. Schweizer, W. Schäfer, and H. Nickel, “Coherent dynamics of excitonic wave packets”, Phys. Rev.
Lett. 70, 3027–3030 (1993).

[15] A. Bonvalet, J. Nagle, V. Berger, A. Migus, J.-L. Martin, and M. Joffre, “Femtosecond infrared emission
resulting from coherent charge oscillations in quantum wells”, Phys. Rev. Lett. 76, 4392–4395 (1996).

[16] R.L. Liboff, “The correspondence principle revisited”, Physics Today 37 (2), 50–55 (February 1984).

[17] I represent an arbitrary wavefunction by ψ(x) and an energy eigenfunction by η(x), following the
admirable convention established by Daniel T. Gillespie in A Quantum Mechanics Primer (International
Textbook Company, Scranton, Pennsylvania, 1970).

[18] This result has been known for some time and rediscovered frequently. The earliest printed mention that
I can find is Carlo U. Segre and J.D. Sullivan, “Bound-state wave packets”, Am. J. Phys. 44, 729–732
(1976). See also references [9] and [10], and Siegmund Brandt and Hans Dieter Dahmen, The Picture
Book of Quantum Mechanics, second edition (Springer-Verlag, Berlin, 1995) pages 107–108.

13



[19] The applicability of Ehrenfest’s theorem to the pathological infinite square well is treated in the delightful
paper D.S. Rokhsar, “Ehrenfest’s theorem and the particle-in-the-box”, Am. J. Phys. 64, 1416–1418
(1996).

[20] If the initial state is, for example, a superposition of the energy eigenstates |1〉, |2〉, and |5〉, then 〈x(t)〉
is a sum of one term with period Trev/3 and another with period Trev/21, whence 〈x(t)〉 is exactly
periodic with period Trev/3. Remarkably, it turns out that in all such cases the full wavefunction recurs
with precisely the same period: see theorem 6 in appendix B.

[21] Notice that such a quasiclassical state does not need to be a conventional wavepacket, although all con-
ventional wavepackets are quasiclassical states. The term “wavepacket” usually refers to a wavefunction
that is well-localized in space, with a probability density that decreases from the center. The term is also
used for a wavefunction that is well-defined in energy, with an energy probability that decreases from
the central energy. A quasiclassical state as defined here need not be well-localized in space, and, while
it is a superposition of energy states in a particular range, within that range the energy probability may
vary in any imaginably way.

[22] D.F. Styer, The Strange World of Quantum Mechanics (Cambridge University Press, Cambridge, UK,
2000) appendix B.2.

14


