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Chapter 1

Stern-Gerlach Analyzers

1.1 Projection probabilities
Consider the following combination of Stern-Gerlach analyzers.

φ

(The dashed line with an arrowhead points in the positive z direction.) Atoms leaving the rightmost +
port are in state |φ+〉, atoms leaving the rightmost − port are in state |φ−〉. Show that the projection
probability from |z−〉 to |φ+〉 is sin2(φ/2).
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2 CHAPTER 1. STERN-GERLACH ANALYZERS

1.2 Multiple analyzers
An atom of state |z+〉 is shot into the following line of three Stern-Gerlach analyzers.

γ

β

|z+>

α

- or -

What is the probability that it emerges from the + output of analyzer C? From the − output? Why
don’t these probabilities sum to one?

1.3 Quantum mechanics is not statistical mechanics
Find the projection probabilities from state |z+〉 to states |30◦+〉, |30◦−〉, |x+〉, and |x−〉. Find the
projection probabilities from states |30◦+〉 and |30◦−〉 to |x−〉. Denote the projection probability from
|A〉 to |B〉 by PP (|A〉, |B〉). If we use the phrase “the probability that a system in state |A〉 is in state
|B〉” for the more precise phrase “the projection probability from |A〉 to |B〉”, then it seems reasonable
that

PP (|z+〉, |x−〉) = PP (|z+〉, |30◦+〉) PP (|30◦+〉, |x−〉) + PP (|z+〉, |30◦−〉) PP (|30◦−〉, |x−〉).

Use your numerical results to show that this expectation is wrong.
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1.4 What is a basis state?
Mr. van Dam claims that a silver atom has three, not two, basic magnetic dipole states. To back up
his claim, he has constructed the following “Stern-Gerlach-van Dam” analyzer out of a z Stern-Gerlach
analyzer and an x Stern-Gerlach analyzer.

Stern, Gerlanch, and van Dam, Inc.

A

B

C

(The output of the x analyzer is piped to output holes A and B using atomic pipes that do not affect
the magnetic dipole state.) Show that the set of exit states {|A〉, |B〉, |C〉} is complete, but that |B〉 is
not orthogonal to |C〉.

1.5 Analyzer loop

|z+>

θ
a

b

?

Atoms in state |z+〉 are injected into an analyzer loop tilted an angle θ to the z direction. The output
atoms are then fed into a z Stern-Gerlach analyzer. What is the probability of the atom leaving the +
channel of the last analyzer when:

a. Branches a and b are both open?

b. Branch b is closed?

c. Branch a is closed?
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1.6 Three analyzer loops
Atoms in state |z+〉 are passed through three analyzer loops as shown.

If all branches are open, 100% of the incoming atoms exit from the output. What percent of the
incoming atoms leave from the output if the following branches are closed? (The atoms are not
observed as they pass through the analyzer loops.)

a. 1b d. 2a g. 1b and 3b
b. 3a e. 2b h. 1b and 3a
c. 3b f. 2a and 3b i. 1b and 3a and 2a

(Note that in going from part (h.) to part (i.) you get more output from increased blockage.)

1.7 Representations
Suppose that the representation of |ψ〉 in the {|z+〉, |z−〉} basis is(

ψ+

ψ−

)

(i.e., ψ+ = 〈z + |ψ〉, ψ− = 〈z − |ψ〉). If ψ+ and ψ− are both real, show that there is an axis upon
which the projection of µ has a definite, positive value, and find the angle between that axis and the
z axis in terms of ψ+ and ψ−.



Chapter 2

Photon Polarization

In lecture I have developed the principles of quantum mechanics using a particular system, the magnetic
moment of a silver atom (a so-called “spin- 1

2” system), which has two basis states. Another system with
two basis states is polarized light. I did not use this system mainly because photons are less familiar than
atoms. This chapter develops the quantum mechanics of photon polarization much as the lectures developed
the quantum mechanics of spin- 1

2 .

One cautionary note: There is always a tendency to view the photon as a little bundle of electric and
magnetic fields, a “wave packet” made up of these familiar vectors. This view is completely incorrect. In
quantum electrodynamics, in fact, the electric field is a classical macroscopic quantity that takes on meaning
only when a large number of photons are present.
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6 CHAPTER 2. PHOTON POLARIZATION

2.1 Classical description of polarized light

unpolarized light x-polarized light θ-polarized light

x

y

θ

When a beam of unpolarized light passes through a sheet of perfect polarizing material (called “Po-
laroid” and represented by the symbol

l

,

where the arrow shows the polarizing axis), the emerging beam is of lower intensity and it is “polarized”,
i.e. the electric field vector undulates but points only parallel or antiparallel to the polarizing axis.
When a beam of vertically polarized light (an “x-polarized beam”) is passed through a sheet of ideal
Polaroid with polarizing axis oriented at an angle θ to the vertical, the beam is reduced in intensity and
emerges with an electric field undulating parallel to the sheet’s polarizing axis (a “θ-polarized beam”).
Polaroid sheet performs these feats by absorbing any component of electric field perpendicular to its
polarizing axis. Show that if the incoming x-polarized beam has intensity I0, then the outgoing θ-
polarized beam has intensity I0 cos2 θ. Show that this expression gives the proper results when θ is 0◦,
90◦, 180◦ or 270◦.
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2.2 Quantal description of polarized light: Analyzers
In quantum mechanics, a photon state is described by three quantities: 1) energy, 2) direction of
motion, 3) polarization. We ignore the first two quantities. There is an infinite number of possible
polarization states: the photons in an x-polarized beam are all in the |x〉 state, the photons in a θ-
polarized beam (0◦ ≤ θ < 180◦) are all in the |θ〉 state, etc. In the quantum description, when an |x〉
photon encounters a polarizing sheet oriented at an angle θ to the vertical, then either it is absorbed
(with probability sin2 θ) or else it is changed into a |θ〉 photon (with probability cos2 θ). A polarizing
sheet is thus not an analyzer: instead of splitting the incident beam into two (or more) beams, it
absorbs one of the beams that we would like an analyzer to emit. An analyzer can be constructed out
of any material that exhibits double refraction. It is conventional to use a simple calcite crystal:

θ

arbitary
input
beam

calcite analyzer

x-polarized beam

y-polarized beam

θ-polarized beam

(θ+90)-polarized beam

What are the projection probabilities |〈x|θ〉|2, |〈x|θ + 90◦〉|2? Show that the states {|θ〉, |θ + 90◦〉}
constitute a basis.

2.3 Interference
As usual, two analyzers (one inserted backwards) make up an analyzer loop.

-

calcite
analyzer

@
@@R

�
���

-
y-polarized

-x-polarized

reversed
calcite

analyzer

@
@@R

�
���

-

Invent a series of experiments that demonstrates quantum interference. Show that the results of these
experiments, and the results of problem 2.2, are consistent with the amplitudes

〈x|θ〉 = cos θ 〈x|θ + 90◦〉 = − sin θ
〈y|θ〉 = sin θ 〈y|θ + 90◦〉 = cos θ.

(2.1)
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2.4 Circular polarization
Just as it is possible to analyze any light beam into x- and y-polarized beams, or θ- and θ + 90◦-
polarized beams, so it is possible to analyze and beam into right- and left-circularly polarized beams.
You might remember from classical optics that any linearly polarized beam splits half-and-half into
right- and left-circularly polarized light when so analyzed.

RL analyzer

-linearly polarized light
- right-circularly polarized light

- left-circularly polarized light

Quantum mechanics maintains that right- and left-circularly polarized beams are made up of photons
in the |R〉 and |L〉 states, respectively. The projection amplitudes thus have magnitudes

|〈R|`p〉| = 1/
√

2
|〈L|`p〉| = 1/

√
2

(2.2)

where |`p〉 is any linearly polarized state. By building an RL analyzer loop you can convince yourself
that

〈θ|R〉〈R|x〉+ 〈θ|L〉〈L|x〉 = 〈θ|x〉 = cos θ. (2.3)

Show that no real valued projection amplitudes can satisfy both relations (2.2) and (2.3), but that the
complex values

〈L|θ〉 = eiθ/
√

2 〈L|x〉 = 1/
√

2
〈R|θ〉 = e−iθ/

√
2 〈R|x〉 = 1/

√
2

(2.4)

are satisfactory!



Chapter 3

Matrix Mathematics

3.1 The trace
For any N ×N matrix A (with components aij) the trace of A is defined by

tr(A) =
N∑

i=1

aii

Show that tr(AB) = tr(BA), and hence that tr(ABCD) = tr(DABC) = tr(CDAB), etc. (the so-
called “cyclic invariance” of the trace). However, show that tr(ABC) does not generally equal tr(CBA)
by constructing a counterexample. (Assume all matrices to be square.)

3.2 The outer product
Any two complex N -tuples can be multiplied to form an N ×N matrix as follows: (The star represents
complex conjugation.)

x = (x1 x2 . . . xN )

y = (y1 y2 . . . yN )

x⊗ y =


x1

x2

...
xN

 (y∗1 y
∗
2 . . . y

∗
N ) =


x1y

∗
1 x1y

∗
2 . . . x1y

∗
N

x2y
∗
1 x2y

∗
2 . . . x2y

∗
N

...
xNy

∗
1 xNy

∗
2 . . . xNy

∗
N

 .

This so-called “outer product” is quite different from the familiar “dot product” or “inner product”

x · y = (x∗1 x
∗
2 . . . x

∗
N )


y1

y2
...
yN

 = x∗1 y1 + x∗2 y2 + . . .+ x∗N yN .

Write a formula for the i, j component of x⊗ y and use it to show that tr(y ⊗ x) = x · y.
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10 CHAPTER 3. MATRIX MATHEMATICS

3.3 Pauli matrices
Three important matrices are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

a. Show that the four matrices {I, σ1, σ2, σ3}, where

I =

(
1 0
0 1

)
,

constitute a basis for the set of 2× 2 matrices, by showing that any matrix

A =

(
a11 a12

a21 a22

)
can be written as

A = z0I + z1σ1 + z2σ2 + z3σ3.

Produce formulas for the zi in terms of the aij .

b. Show that

i. σ2
1 = σ2

2 = σ2
3 = I2 = I

ii. σiσj = −σjσi for i 6= j

iii. σ1σ2 = iσ3 (a)
σ2σ3 = iσ1 (b)
σ3σ1 = iσ2 (c)

Note: Equations (b) and (c) are called “cyclic permutations” of equation (a), because in each
equation, the indices go in the order

1 2

3

and differ only by starting at different points in the “merry-go-round.”

c. Show that for any complex numbers c1, c2, c3,

(c1σ1 + c2σ2 + c3σ3)2 = (c21 + c22 + c23)I.



11

3.4 More on Pauli matrices

a. Find the eigenvalues and corresponding (normalized) eigenvectors for all three Pauli matrices.

b. Define exponentiation of matrices via

eM =
∞∑

n=0

Mn

n!
.

Show that
eσi = cosh(1)I + sinh(1)σi for i = 1, 2, 3

and that
e(σ1+σ3) = cosh(

√
2)I +

1√
2

sinh(
√

2)(σ1 + σ3).

(Hint: Look up the series expansions of sinh and cosh.)

c. Prove that eσ1eσ3 6= e(σ1+σ3).

3.5 Hermitian operators

a. Show that if Â is a linear operator and (a, Âa) is real for all vectors a, then Â is Hermitian. (Hint:
Employ the hypothesis with a = b+ c and a = b+ ic.)

b. Show that any operator of the form

Â = ca|a〉〈a|+ cb|b〉〈b|+ · · ·+ cz|z〉〈z|,

where the cn are real constants, is Hermitian.

c. You know that if an operator is Hermitian then all of its eigenvalues are real. Show that the
converse is false by producing a counterexample. (Hint: Try a 2× 2 upper triangular matrix.)

3.6 Unitary operators
Show that all the eigenvalues of a unitary operator have square modulus unity.

3.7 Commutator algebra
Prove that

[Â, bB̂ + cĈ] = b[Â, B̂] + c[Â, Ĉ]

[aÂ+ bB̂, Ĉ] = a[Â, Ĉ] + b[B̂, Ĉ]

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

[Â, [B̂, Ĉ]] + [Ĉ, [Â, B̂]] + [B̂, [Ĉ, Â]] = 0 (the “Jacobi identity”).



Chapter 4

The Density Matrix

4.1 Definition
Consider a system in quantum state |ψ〉. Define the operator

ρ̂ = |ψ〉〈ψ|,

called the density matrix , and show that the expectation value of the observable associated with
operator Â in |ψ〉 is

tr{ρ̂Â}.

4.2 Statistical mechanics
Frequently physicists don’t know exactly which quantum state their system is in. (For example, silver
atoms coming out of an oven are in states of definite µ projection, but there is no way to know which
state any given atom is in.) In this case there are two different sources of measurement uncertainty: first,
we don’t know what state they system is in (statistical uncertainty, due to our ignorance) and second,
even if we did know, we couldn’t predict the result of every measurement (quantum uncertainty, due
to the way the world works). The density matrix formalism neatly handles both kinds of uncertainty
at once.

If the system could be in any of the states |a〉, |b〉, . . . , |i〉, . . . (not necessarily a basis set), and if it
has probability pi of being in state |i〉, then the density matrix

ρ̂ =
∑

i

pi|i〉〈i||

is associated with the system. Show that the expectation value of the observable associated with Â is
still given by

tr{ρ̂Â}.

4.3 A one-line proof (if you see the right way to do it)
Show that tr{ρ̂} = 1.
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Chapter 5

Neutral K Mesons

You know that elementary particles are characterized by their mass and charge, but that two particles
of identical mass and charge can still behave differently. Physicists have invented characteristics such as
“strangeness” and “charm” to label (not explain!) these differences. For example, the difference between
the electrically neutral K meson K0 and its antiparticle the K̄0 is described by attributing a strangeness of
+1 to the K0 and of −1 to the K̄0.

Most elementary particles are completely distinct from their antiparticles: an electron never turns into a
positron! Such a change is prohibited by charge conservation. However this prohibition does not extend to
the neutral K meson precisely because it is neutral. In fact, there is a time-dependent amplitude for a K0

to turn into a K̄0. We say that the K0 and the K̄0 are the two basis states for a two-state system. This
two-state system has an observable strangeness, represented by an operator, and we have a K0 when the
system is in an eigenstate of strangeness with eigenvalue +1, and a K̄0 when the system is in an eigenstate
of strangeness with eigenvalue −1. When the system is in other states it does not have a definite value of
strangeness, and cannot be said to be “a K0” or “a K̄0”. The two strangeness eigenstates are denoted |K0〉
and |K̄0〉.

5.1 Strangeness
Write an outer product expression for the strangeness operator Ŝ, and find its matrix representation
in the {|K0〉, |K̄0〉} basis. Note that this matrix is just the Pauli matrix σ3.

5.2 Charge Parity
Define an operator ĈP that turns one strangeness eigenstate into the other:

ĈP |K0〉 = |K̄0〉, ĈP |K̄0〉 = |K0〉.

(CP stands for “charge parity”, although that’s not important here.) Write an outer product expression
and a matrix representation (in the {|K0〉, |K̄0〉} basis) for the ĈP operator. What is the connection

13
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between this matrix and the Pauli matrices? Show that the normalized eigenstates of CP are

|KU 〉 =
1√
2

(|K0〉+ |K̄0〉),

|KS〉 =
1√
2

(|K0〉 − |K̄0〉).

(The U and S stand for unstable and stable, but that’s again irrelevant because we’ll ignore K meson
decay.)

5.3 The Hamiltonian
The time evolution of a neutral K meson is governed by the “weak interaction” Hamiltonian

Ĥ = e1̂ + fĈP .

(There is no way for you to derive this. I’m just telling you.) Show that the numbers e and f must be
real.

5.4 Time evolution
Neutral K mesons are produced in states of definite strangeness because they are produced by the
“strong interaction” Hamiltonian that conserves strangeness. Suppose one is produced at time t = 0
in state |K0〉. Solve the Schrödinger equation to find its state for all time afterwards. Why is it easier
to solve this problem using |KU 〉, |KS〉 vectors rather than |K0〉, |K̄0〉 vectors? Calculate and plot the
probability of finding the meson in state |K0〉 as a function of time.

(The neutral K meson system is extraordinarily interesting. I have oversimplified by ignoring decay.
More complete treatments can be found in Lipkin, Das & Melissinos, Feynman, and Baym.)



Chapter 6

Continuum Systems

6.1 The states {|p〉} constitute a continuum basis
In lecture we showed that the inner product 〈x|p〉 must have the form

〈x|p〉 = C ei(p/h̄)x (6.1)

where C may be chosen for convenience.

a. Show that the operator

Â =
∫ ∞

−∞
dp |p〉〈p| (6.2)

is equal to
2πh̄|C|21̂ (6.3)

by evaluating
〈φ|Â|ψ〉 = 〈φ|1̂Â1̂|ψ〉 (6.4)

for arbitrary states |ψ〉 and |φ〉. Hints: Set the first 1̂ equal to
∫∞
−∞ dx |x〉〈x|, the second 1̂ equal

to
∫∞
−∞ dx′ |x′〉〈x′|. The identity

δ(x) =
1
2π

∫ ∞

−∞
dk eikx (6.5)

(see Winter eqn. (3.2-7) p. 107) for the Dirac delta function is useful here. Indeed, this is one of
the most useful equations to be found anywhere!

b. Using the conventional choice C = 1/
√

2πh̄, show that

〈p|p′〉 = δ(p− p′). (6.6)

The expression (6.5) is again helpful.

15
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6.2 Peculiarities of continuum basis states
Recall that the elements of a continuum basis set are peculiar in that they possess dimensions. That
is not their only peculiarity. For any ordinary state |ψ〉, the wavefunction ψ(x) = 〈x|ψ〉 satisfies∫ ∞

−∞
dx ψ∗(x)ψ(x) = 1. (6.7)

Show that the states |x′〉 and |p〉 cannot obey this normalization.

6.3 Hermiticity of the momentum operator
Show that the momentum operator is Hermitian over the space of states |ψ〉 that have wavefunction
ψ(x) which vanish at x = ±∞. Hint:

〈φ|p̂|ψ〉 =
∫ ∞

−∞
dx φ∗(x)

(
−ih̄dψ(x)

dx

)
. (6.8)

Integrate by parts.

6.4 Commutator of x̂ and p̂

Show that [x̂, p̂] = ih̄ by showing that 〈φ|[x̂, p̂]|ψ〉 = ih̄〈φ|ψ〉 for arbitrary |φ〉 and |ψ〉. Hints: First
evaluate 〈x|p̂x̂|ψ〉 and 〈x|x̂p̂|ψ〉. It helps to define |χ〉 = x̂|ψ〉.

6.5 Momentum representation of the Schrödinger equation
You know that the Schrödinger equation

ih̄
d|ψ(t)〉
dt

= Ĥ |ψ(t)〉 (6.9)

has the position representation

ih̄
∂〈x|ψ(t)〉

∂t
= 〈x|Ĥ|ψ(t)〉 (6.10)

or

ih̄
∂ψ(x; t)
∂t

= − h̄2

2m
∂2ψ(x; t)
∂x2

+ V (x) ψ(x; t). (6.11)

In this problem you will uncover the corresponding equation that governs the time development of

ψ̃(p; t) = 〈p|ψ(t)〉. (6.12)

The left hand side of equation (6.9) is no problem because

〈p|ih̄ d
dt
|ψ(t)〉 = ih̄

∂ψ̃(p; t)
∂t

. (6.13)

To investigate the right hand side of equation (6.9) write

Ĥ =
1

2m
p̂2 + V̂ (6.14)

where p̂ is the momentum operator and V̂ the potential energy operator.
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a. Use the Hermiticity of p̂ to show that

〈p|Ĥ|ψ(t)〉 =
p2

2m
ψ̃(p; t) + 〈p|V̂ |ψ(t)〉. (6.15)

Now we must investigate 〈p|V̂ |ψ(t)〉.

b. Show that
〈p|V̂ |ψ(t)〉 =

1√
2πh̄

∫ ∞

−∞
dx e−i(p/h̄)x V (x)ψ(x; t) (6.16)

by inserting the proper form of 1̂ at the proper location.

c. Define the (modified) Fourier transform Ṽ (p) of V (x) by

Ṽ (p) =
1√
2πh̄

∫ ∞

−∞
dx e−i(p/h̄)xV (x) (6.17)

=
∫ ∞

−∞
dx 〈p|x〉V (x). (6.18)

Note that Ṽ (p) has funny dimensions. Show that

V (x) =
1√
2πh̄

∫ ∞

−∞
dp ei(p/h̄)x Ṽ (p) (6.19)

=
∫ ∞

−∞
dp 〈x|p〉 Ṽ (p). (6.20)

You may use either forms (6.17) and (6.19) in which case the proof employs equation (6.5), or
forms (6.18) and (6.20) in which case the proof involves completeness and orthogonality of basis
states.

d. Hence show that
〈p|V̂ |ψ(t)〉 =

1√
2πh̄

∫ ∞

−∞
dp′ Ṽ (p− p′) ψ̃(p′; t). (6.21)

(Caution! Your intermediate expressions will probably involve three distinct variables that you’ll
want to call “p”. Put primes on two of them!)

e. Put everything together to see that ψ̃(p; t) obeys the integro-differential equation

ih̄
∂ψ̃(p; t)
∂t

=
p2

2m
ψ̃(p; t) +

1√
2πh̄

∫ ∞

−∞
dp′ Ṽ (p− p′) ψ̃(p′; t). (6.22)

This form of the Schrödinger equation is particularly useful in the study of superconductivity.



Chapter 7

The Free Particle

7.1 Energy eigenstates
In lecture we examined the behavior of a free particle in a state of definite momentum. Such states
have a definite energy, but they are not the only possible states of definite energy.

a. Show that the state
|ρ(0)〉 = A|p0〉+B| − p0〉 (7.1)

where |A|2 + |B|2 = 1 has definite energy E(p0) = p2
0/2m. (That is, |ρ(0)〉 is an energy eigenstate

with eigenvalue p2
0/2m).

b. Show that the “wavefunction” corresponding to |ρ(t)〉 evolves in time as

ρ(x; t) =
1√
2πh̄

[ A ei(p0x−E(p0)t)/h̄ + B ei(−p0x−E(p0)t)/h̄]. (7.2)

I use the term wavefunction in quotes because ρ(x; t) is not 〈x|normal state〉 but rather a sum of
two terms like 〈x|continuum basis state〉.

c. Show that the “probability density” |ρ(x; t)|2 is independent of time and given by

|ρ(x; t)|2 =
1

2πh̄
[1 + 2 Re{A∗B} cos

(
2p0x

h̄

)
+ 2 Im{A∗B} sin

(
2p0x

h̄

)
]. (7.3)

18
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7.2 A useful integral
Using

∫∞
−∞ du e−u2

=
√
π, show that∫ ∞

−∞
du e−u2α2/2 eiuy =

√
2π
α

e−y2/2α2
(7.4)

where α may be complex, but Re{α2} > 0. Hint: complete the square by writing

−u
2α2

2
+ iuy = −

(
uα√

2
− i y√

2α

)2

− y2

2α2
.

Note: If c is a real number independent of x, you know that

lim
x→∞

(x+ c) =∞.

You might think that a different limit would result if the additive constant c were complex, but in fact,
that is not the case:

lim
x→∞

(x+ ic) =∞.

It is not unusual for the limit of a sequence of complex numbers to be real.

7.3 A somewhat less useful integral
Given

∫∞
−∞ dx e−x2

=
√
π, show that ∫ ∞

−∞
dx x2 e−x2

=
√
π/2. (7.5)

Hint:
∫∞
−∞ dx x2e−x2

= 2
∫∞
0
dx x2e−x2

, then integrate by parts.

7.4 Static properties of a Gaussian wavepacket
Consider the wavefunction

ψ(x; 0) =
A√
σ
e−x2/2σ2

ei(p0/h̄)x. (7.6)

a. Show that the wavefunction is properly normalized when A = 1
4√π
.

b. Show that in this state 〈x̂〉 = 0 (trivial), and ∆x =
√
〈(x̂− 〈x̂〉)2〉 = σ/

√
2 (easy).

c. Use equation (7.4) to show that

ψ̃(p; 0) = A

√
σ

h̄
e−(p−p0)

2σ2/2h̄2
. (7.7)

d. Hence show that 〈p̂〉 = p0 and ∆p = h̄/(
√

2σ).
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7.5 Force-free motion of a Gaussian wavepacket
A particle with the initial wavefunction given in the previous problem evolves in time to

ψ(x; t) =
1√
2πh̄

∫ ∞

−∞
dp ei(px−E(p)t)/h̄ ψ̃ (p; 0). (7.8)

a. Plug in ψ̃(p; 0) and change the integration variable to k where h̄k = p− p0 in order to show that

ψ(x; t) = A

√
σ

2π
ei(p0x−E(p0)t)/h̄

∫ ∞

−∞
dk e−k2(σ2+i h̄t

m )/2 eik(x− p0
m t). (7.9)

Hint: Change variable first to p′ = p− p0, then to k = p′/h̄.

b. Define the complex dimensionless quantity

β = 1 + i
h̄t

mσ2
(7.10)

and evaluate the integral using equation (7.4), giving

ψ(x; t) = A
1√
σβ

ei(p0x−E(p0)t)/h̄ e−(x− p0
m t)2/2σ2β . (7.11)

c. Hence show that
|ψ(x; t)|2 =

A2

σ|β|
e−(x− p0

m t)2/(σ2|β|2). (7.12)

By comparing |ψ(x; t)|2 with |ψ(x; 0)|2, read off the results

〈x〉 =
p0

m
t , ∆x =

σ|β|√
2

=
1√
2

(
σ2 +

h̄2

σ2m2
t2
) 1

2

. (7.13)

(No computation is required!)



Chapter 8

Potential Problems

8.1 Ground state of the simple harmonic oscillator
You may have been surprised that the lowest possible energy for the simple harmonic oscillator was
E0 = 1

2 h̄ω and not E0 = 0. This exercise attempts to explain the non-zero ground state energy in
physical (semiclassical) rather than mathematical terms. It then goes on to use these ideas and the
uncertainty principle to guess at a value for the ground state energy. You may abhor such non-rigorous
arguments, but you must be able to do them in order to make informed guesses about the behavior of
systems that are too complicated to yield to rigorous mathematical methods.

In classical mechanics the SHO ground state has zero potential energy (the particle is at the origin) and
zero kinetic energy (it is motionless). However in quantum mechanics if a particle is localized precisely
at the origin, and hence has zero potential energy, then it has a considerable spread of momentum
values and hence a non-zero kinetic energy (or, to be precise, a non-zero expectation value for kinetic
energy). The kinetic energy can be reduced by decreasing the spread of momentum values, but only by
increasing the spread of position values and hence by increasing the (expected value of the) potential
energy. The ground state is the state in which this trade off between kinetic and potential energies
results in a minimum total energy.

Assume that the spread in position extends over some distance d about the origin (i.e. the particle will
very likely be found between x = −d/2 and x = +d/2). This will result in a potential energy somewhat
less than 1

2mω
2(d

2 )2. This argument is not intended to be rigorous, so let’s forget the “somewhat less”
part of the last sentence. Furthermore, a position spread of ∆x = d implies through the uncertainty
principle a momentum spread of ∆p ≥ h̄/2d. Continuing in our non-rigorous vein, let’s set ∆p = h̄/2d
and kinetic energy equal to 1

2m (∆p
2 )2.

Sketch potential energy, kinetic energy and total energy as a function of d. Find the minimum value
of E(d) and compare with the ground state energy E0 = 1

2 h̄ω. (Note that if h̄ were zero, the energy
minimum would be at E(d) = 0!)
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8.2 Ladder operators for the simple harmonic oscillator

a. Express x̂ and p̂ in terms of â and â†.

b. Calculate the following simple harmonic oscillator matrix elements:

〈m|â|n〉 〈m|p̂|n〉 〈m|x̂p̂|n〉
〈m|â†|n〉 〈m|x̂2|n〉 〈m|p̂x̂|n〉
〈m|x̂|n〉 〈m|p̂2|n〉 〈m|Ĥ|n〉

c. Show that the expectation value of the potential energy in a SHO energy eigenstate equals the
expectation value of the kinetic energy in that state. (Recall that for a classical simple harmonic
oscillator, the time averaged potential energy equals the time averaged kinetic energy.)

d. Find ∆x, ∆p, and ∆x∆p for the energy eigenstate |n〉.

8.3 The infinite square well
You are no doubt familiar with the energy eigenproblem for the infinite square well, but a short review
is never-the-less in order. Consider a well of width L, and place the origin at the center of the well.
The mathematical problem is to find values En and functions ηn(x) such that a solution to

− h̄2

2m
d2ηn

dx2
= Enηn(x) (8.1)

has
ηn(−L

2 ) = ηn(L
2 ) = 0. (8.2)

Show that the eigenvalues are

En =
n2

2m

(
πh̄

L

)2

n = 1, 2, 3, 4, . . . (8.3)

and the eigenfunctions are

ηn(x) =


√

2
L cos(nπx/L) for n = 1, 3, 5, . . .√
2
L sin(nπx/L) for n = 2, 4, 6, . . . .

(8.4)

Be sure to explain carefully why negative and zero values of n are not used. Note that ηn(x) is even
for n odd, odd for n even.

Bonus (research problem): I have a feeling that this problem could be solved by appropriately defined
ladder operators, but I don’t know how to do it. If you have a lot of time to kill, you might try to find
such a solution.



23

8.4 Two-dimensional simple harmonic oscillator
The classical energy of a two-dimensional simple harmonic oscillator is

p2
x

2m
+

p2
y

2m
+

1
2
kxx

2 +
1
2
kyy

2 (8.5)

so the quantal Hamiltonian is

Ĥ = p̂2
x

2m + 1
2mω

2
x x̂

2 + p̂2
y

2m + 1
2mω

2
y ŷ

2

= Ĥx + Ĥy.

Note that any operator with subscript x commutes with any operator with subscript y. Define appro-
priate ladder operators âx, â

†
x, ây, â

†
y and show that a state labeled |n,m〉 is an energy eigenstate

with energy

En,m = h̄ωx

(
n+

1
2

)
+ h̄ωy

(
m+

1
2

)
n,m = 0, 1, 2, 3, . . . . (8.6)

Show that the isotropic case ωx = ωy exhibits degeneracy: there are N +1 different energy eigenstates
with energy eigenvalue h̄ω(N + 1), N = 0, 1, 2, . . . .



Chapter 9

Perturbation Theory for the Energy

Eigenproblem

9.1 Square well with a bump
An infinite square well of width L (problem 8.3) is perturbed by putting in a bit of potential of height
V and width a in the middle of the well. Find the first order energy shifts for all the energy eigenstates,
and the first order perturbed wavefunction for the ground state (your result will be an infinite series).
(Note: Many of the required matrix elements will vanish! Before you integrate, ask yourself whether the
integrand is odd.) When a = L the perturbed problem can be solved exactly. Compare the perturbed
energies with the exact energies and the perturbed ground state wavefunction with the exact ground
state wavefunction.

6 6

V

24
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9.2 Anharmonic oscillator

a. Show that for the simple harmonic oscillator,

〈m|x̂3|n〉 =

√(
h̄

2mω

)3

[
√
n(n− 1)(n− 2) δm,n−3 + 3

√
n3 δm,n−1 (9.1)

+ 3
√

(n+ 1)3 δm,n+1 +
√

(n+ 1)(n+ 2)(n+ 3) δm,n+3].

b. Recall that the simple harmonic oscillator is always an approximation. The real problem always
has a potential V (x) = 1

2kx
2 + bx3 + cx4 + · · ·. The contributions beyond 1

2kx
2 are called

“anharmonic terms”. Let us ignore all the anharmonic terms except for bx3. Show that to leading
order the nth energy eigenvalue changes by

− b2

h̄ω

(
h̄

2mω

)3

(30n2 + 30n+ 11). (9.2)

Note that these shifts are not “small” when n is large, in which case it is not appropriate to
truncate the perturbation series at leading order. Explain physically why you don’t expect the
shifts to be small for large n.

9.3 Slightly relativistic simple harmonic oscillator
You know that the concept of potential energy is not applicable in relativistic situations. One conse-
quence of this is that the only fully relativistic quantum theories possible are quantum field theories.
However there do exist situations where a particle’s motion is “slightly relativistic” (say, v/c ∼ 0.1) and
where the force responds quickly enough to the particle’s position that the potential energy concept
has approximate validity. For a mass on a spring, this situation hold when the spring’s response time
is much less than the period.

a. Show that a reasonable approximate Hamiltonian for such a “slightly relativistic SHO” is

Ĥ =
p̂2

2m
+
mω2

2
x̂2 − 1

8c2m3
p̂4. (9.3)

b. Show that

〈m|p̂4|0〉 =
(
mh̄ω

2

)2

(3 δm,0 − 6
√

2 δm,2 + 2
√

6 δm,4). (9.4)

c. Calculate the leading non-vanishing energy shift of the ground state due to this relativistic per-
turbation.

d. Calculate the leading corrections to the ground state eigenvector |0〉.
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9.4 Two-state systems
The most general Hamiltonian for a two state system (e.g. spin 1

2 , neutral K meson, ammonia molecule)
is represented by

a0I + a1σ1 + a3σ3 (9.5)

where a0, a1, and a3 are real numbers and the σ’s are Pauli matrices.

a. Assume a3 = 0. Solve the energy eigenproblem. (This can be done by inspection.)

b. Now assume a3 � a0 ≈ a1. Use perturbation theory to find the leading order shifts in the energy
eigenvalues and eigenstates.

c. Find the energy eigenvalues exactly and show that they agree with the perturbation theory results
when a3 � a0 ≈ a1.

9.5 Degenerate perturbation theory in a two-state system
Consider a two state system with a Hamiltonian represented in some basis by

a0I + a1σ1 + a3σ3. (9.6)

We shall call the basis for this representation the “initial basis”. This exercise shows how to use
perturbation theory to solve (approximately) the energy eigenproblem in the case a0 � a1 ≈ a3.

Ĥ(0) =

(
a0 0
0 a0

)
Ĥ ′ =

(
a3 a1

a1 −a3

)
(9.7)

In this case the unperturbed Hamiltonian is degenerate. The initial basis{(
1
0

)
,

(
0
1

)}
(9.8)

is a perfectly acceptable energy eigenbasis (both states have energy a0), but the basis{
1√
2

(
1
1

)
,

1√
2

(
1
−1

)}
, (9.9)

for example, is just as good.

a. Show that if the non-degenerate formula E(1)
n = 〈n(0)|Ĥ ′|n(0)〉 were applied (or rather, misapplied)

to this problem, then the formula would produce different energy shifts depending upon which
basis was used!

Which, if either, are the true energy shifts? The answer comes from equation (19) of the “Derivation
of Perturbation Theory” notes, namely

(En(0) − E(0)
m ) 〈m(0)|n̄(1)〉 = 〈m(0)|Ĥ ′|n(0)〉 whenever m 6= n. (9.10)
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This equation was derived from the fundamental assumption that |n(ε)〉 and En(ε) could be expanded
in powers of ε. If the unperturbed states |n(0)〉 and |m(0)〉 are degenerate, then E

(0)
n = E

(0)
m and the

above equation demands that

〈m(0)|Ĥ|n(0)〉 = 0 whenever m 6= n and E(0)
n = E

(0)
m . (9.11)

If this does not apply, then the fundamental assumption must be wrong.

And this answers the question of which basis to use! Consistency demands the use of a basis in which
the perturbing Hamiltonian is diagonal. (The Hermiticity of Ĥ ′ guarantees that such a basis exists.)

b. Without finding this diagonalizing basis, find the representation of Ĥ ′ in it.

c. Find the representation of Ĥ(0) in the diagonalizing basis. (Trick question.)

d. What are the energy eigenvalues of the full Hamiltonian Ĥ(0) + Ĥ ′? (Not “correct to some order
in perturbation theory,” but the exact eigenvalues!)

e. Still without explicitly producing the diagonalizing basis, show that the states in that basis are
exact energy eigenstates of the full Hamiltonian.

f. (Optional) If you’re ambitious, you may now go ahead and show that the (normalized) diagonal-
izing basis vectors are

1
√

2
√
a2
1 + a2

3 − a3

√
a2
1 + a2

3

(
+a1

−a3 +
√
a2
1 + a2

3

)
=

(
cos θ
sin θ

)
, (9.12)

1
√

2
√
a2
1 + a2

3 + a3

√
a2
1 + a2

3

(
−a1

+a3 +
√
a2
1 + a2

3

)
=

(
− sin θ
cos θ

)
, (9.13)

where
tan θ =

a1

a3 +
√
a2
1 + a2

3

. (9.14)

Coda: Note the reasoning of degenerate perturbation theory: We expand about the basis that diag-
onalizes Ĥ ′ because expansion about any other basis is immediately self-contradictory, not because
this basis is guaranteed to produce a sensible expansion. As usual in perturbation theory, we have no
guarantee that this expansion makes sense. We do, however, have a guarantee that any other expansion
does not make sense.



Chapter 10

Perturbation Theory for the Time

Development Problem

10.1 On being kicked upstairs
A particle in the ground state of an infinite square well (problem 8.3) is perturbed by a transient effect
described by the Hamiltonian (in coordinate representation)

H ′(x; t) = A0 sin
(

2πx
L

)
δ(t), (10.1)

where A0 is a constant with the dimensions of action. What is the probability that after this jolt an
energy measurement will find the system in the first excited state?

10.2 Second-order time-dependent perturbation theory
In lecture we treated, to first order in perturbation theory, the problem of a simple harmonic oscillator
in its ground state exposed to a sinusoidal external force (with frequency ω′ and amplitude F0). We
concluded that the only non-vanishing first-order transition amplitudes were c(1)0 (t) = 1 and c

(1)
1 (t).

(Here the superscript (1) denotes “first-order”.) Show that to second order the non-vanishing transition
amplitudes are:

c
(2)
0 (t) = 1− i

h̄

∫ t

0

H ′
01(t

′) e−iωt′ c
(1)
1 (t′)dt′, (10.2)

c
(2)
1 (t) = − i

h̄

∫ t

0

H ′
10(t

′) e+iωt′ c
(1)
0 (t′)dt′, (10.3)

c
(2)
2 (t) = − i

h̄

∫ t

0

H ′
21(t

′) e+iωt′ c
(1)
1 (t′)dt′, (10.4)

where

H ′
01(t) = H ′

10(t) = F0

√
h̄

2mω
cos(ω′t), (10.5)

28



29

and

H ′
21(t) = F0

√
2h̄

2mω
cos(ω′t). (10.6)

The integrals for c(2)0 (t) and c
(2)
2 (t) are not worth working out, but it is worth noticing that c(2)2 (t)

involves a factor of (F0)2 (where F0 is in some sense “small”), and that c(2)1 (t) = c
(1)
1 (t).



Chapter 11

Angular Momentum

11.1 Trivial pursuit

a. Show that if an operator commutes with two components of an angular momentum vector, it
commutes with the third as well.

b. If Ĵx and Ĵz are represented by matrices with pure real entries (as is conventionally the case, see
problem 11.2), show that Ĵy is represented by a matrix with pure imaginary entries.

11.2 Matrix representations in spin- 1
2

If we are interested only in a particle’s angular momentum, and not in its position, momentum, etc.,
then for a spin- 1

2 particle the basis {| 12 ,
1
2 〉, |

1
2 ,−

1
2 〉} spans the relevant states. These states are usually

denoted simply {| ↑〉, | ↓〉}. Recall that the matrix representation of operator Â in this basis is(
〈↑ |Â| ↑〉 〈↑ |Â| ↓〉
〈↓ |Â| ↑〉 〈↓ |Â| ↓〉

)
, (11.1)

and recall also that this isn’t always the easiest way to find a matrix representation.

a. Find matrix representations in the {| ↑〉, | ↓〉} basis of Ŝz, Ŝ+, Ŝ−, Ŝx, Ŝy, and Ŝ2/@. Note the
reappearance of the Pauli matrices!

b. Find normalized column matrix representations for the eigenstates of Ŝx:

Ŝx| →〉 = +
h̄

2
| →〉 (11.2)

Ŝx| ←〉 = − h̄
2
| ←〉. (11.3)
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11.3 Rotations and spin- 1
2

Verify explicitly that

| →〉 = e−i(Ŝy/h̄)(+π/2)| ↑〉, (11.4)

| ←〉 = e−i(Ŝy/h̄)(−π/2)| ↑〉. (11.5)

(Problems 3.3 and 3.4 are relevant here.)

11.4 Spin-1 projection amplitudes

a. (Easy.) Prove that
d
(j)
m,m′(θ) = [d(j)

m′,m(−θ)]∗. (11.6)

b. Show that the d(j)
m,m′(θ) with j = 1 are

d
(1)
1,1(θ) = +1

2 (cos θ + 1) d
(1)
1,0(θ) = − 1√

2
sin θ d

(1)
1,−1(θ) = − 1

2 (cos θ − 1)

d
(1)
0,1(θ) = + 1√

2
sin θ d

(1)
0,0(θ) = cos θ d

(1)
0,−1(θ) = − 1√

2
sin θ

d
(1)
−1,1(θ) = − 1

2 (cos θ − 1) d
(1)
−1,0(θ) = + 1√

2
sin θ d

(1)
−1,−1(θ) = +1

2 (cos θ + 1)



Chapter 12

Central Force Motion

12.1 Positronium
The “atom” positronium is a bound state of an electron and a positron. Find the allowed energies for
positronium.

12.2 Operator factorization solution of the Coulomb problem
The bound state energy eigenvalues of the hydrogen atom can be found using the operator factorization
method. In reduced units, the radial wave equation is[

− d2

dρ2
+
`(`+ 1)
ρ2

− 2
ρ

]
un,`(ρ) ≡ h` un,`(ρ) = En,` un,`(ρ). (12.1)

Introduce the operators

D
(`)
± ≡

d

dρ
∓ `

ρ
± 1
`

(12.2)

and show that
D

(`+1)
− D

(`+1)
+ = −h` −

1
(`+ 1)2

, D
(`)
+ D

(`)
− = −h` −

1
`2
. (12.3)

From this, conclude that
h`+1 D

(`+1)
+ un,`(ρ) = En,` D

(`+1)
+ un,`(ρ) (12.4)

whence
D

(`+1)
+ un,`(ρ) ∝ un,`+1(ρ) (12.5)

and En,` is independent of `.

Argue that for every En,` < 0 there is a maximum `. (Hint: examine the effective potential for radial
motion.) Call this value `max, and set n = `max + 1 to show that

En,` = − 1
n2
, ` = 0, . . . , n− 1. (12.6)
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12.3 A non-Coulombic central force
The central potential

V (r) = −k
r

+
c

r2
(12.7)

is a model (albeit a poor one) for the interaction of the two atoms in a diatomic molecule. (Arnold
Sommerfeld called this the “rotating oscillator” potential: see his Atomic Structure and Spectral Lines,
3rd ed., 1922, appendix 17.) Steven A. Klein (class of 1989) investigated this potential and found that
its energy eigenproblem could be solved exactly.

a. Sketch the potential, assuming that k and c are both positive.

b. Following the notes “Bound State Energy Eigenproblem for Coulombic Potentials”, convert the
radial equation of the energy eigenproblem into[

− d2

dρ2
− 2
ρ

+
γ + `(`+ 1)

ρ2

]
un,`(ρ) = En,` un,`(ρ). (12.8)

where γ = 2cM/h̄2 and where ρ, En,`, and un,`(ρ) are to be identified.

c. Find two values of x such that x(x+1) = γ+`(`+1). Select whichever one will be most convenient
for later use.

d. Convince yourself that the solution described in the notes does not depend upon ` being an integer,
and conclude that the energy eigenvalues are

En,` =
−1

[n− `+ 1
2 (−1 +

√
(2`+ 1)2 + 4γ)]2

(12.9)

where n = 1, 2, 3, . . . and where for each n, ` can take on values ` = 0, 1, 2, . . . , n− 1.

e. Verify that this energy spectrum reduces to the Coulomb limit when c = 0.

12.4 The quantum mechanical virial theorem

a. Argue that, in an energy eigenstate |η(t)〉, the expectation value 〈r̂ · p̂〉 does not change with time.

b. Hence conclude that 〈η(t)| [r̂ · p̂, Ĥ] |η(t)〉 = 0.

c. Show that [r̂ · p̂, p̂2] = 2ih̄p̂2, while [r̂ · p̂, V (r̂)] = −ih̄ r̂ ·∇V (r̂), where V (r) is any scalar function
of the vector r. (Hint: For the second commutator, use an explicit position basis representation.)

d. Suppose the Hamiltonian is
Ĥ =

1
2m

p̂2 + V (r̂) = T̂ + V̂ . (12.10)

Define the force function F(r) = −∇V(r) and the force operator F̂ = F(r̂). Conclude that, for
an energy eigenstate,

2〈T̂ 〉 = −〈r̂ · F̂〉. (12.11)

This is the “virial theorem.”
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e. If V (r) = C/rn, show that 2〈T̂ 〉 = −n〈V̂ 〉,

〈T̂ 〉 =
n

n− 2
E, and 〈V̂ 〉 =

−2
n− 2

E, (12.12)

for the energy eigenstate with energy E.

12.5 Research project
Discuss the motion of wavepackets in a Coulombic potential. Does the expectation value of r̂ follow
the classical Kepler ellipse? Is it even restricted to a plane? Does the wavepacket spread out in time
(as with the force-free particle) or remain compact (as with the simple harmonic oscillator)?



Chapter 13

Identical Particles

13.1 The meaning of two-particle wavefunctions

a. The wavefunction ψ(xA, xB) describes two non-identical particles in one dimension. Does∫ ∞

−∞
dxA

∫ ∞

−∞
dxB |ψ(xA, xB)|2 (13.1)

equal one or two? Write integral expressions for:

i. The probability of finding particle A between x1 and x2 and particle B between x3 and x4.

ii. The probability of finding particle A between x1 and x2, regardless of where particle B is.

b. The wavefunction ψ(xA, xB) describes two identical particles in one dimension. Does∫ ∞

−∞
dxA

∫ ∞

−∞
dxB |ψ(xA, xB)|2 (13.2)

equal one or two? Assuming that x1 < x2 < x3 < x4, write integral expressions for:

i. The probability of finding one particle between x1 and x2 and the other between x3 and x4.

ii. The probability of finding a particle between x1 and x2.

c. Look up the definition of “configuration space” in a classical mechanics book. Does the wavefunc-
tion inhabit configuration space or conventional three-dimensional position space? For discussion:
Does your answer have any bearing upon the question of whether the wavefunction is “physically
real” or a “mathematical convenience”? Does it affect your thoughts concerning measurement
and the “collapse of the wavepacket”?
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13.2 Symmetric and close together, antisymmetric and far apart
In lecture I argued that symmetric wavefunctions describe particles that huddle together while anti-
symmetric wavefunctions describe particles that avoid one another.

a. Illustrate this principle as follows: Construct symmetric and antisymmetric two-particle wave-
functions out of the single-particle wavefunctions

η1(x) =

√
2
L

cos(π
x

L
) and η2(x) =

√
2
L

sin(2π
x

L
), −L

2
≤ x ≤ L

2
, (13.3)

which are the first and second energy eigenfunctions for the infinite square well of width L. For
each (anti)symmetrized function make a plot of xA and xB and shade in regions of high probability
density.

b. Prove that if the two wavefunctions ψ(x) and φ(x) are orthogonal, then the expectation value of
(xA − xB)2 for the antisymmetric combination of the two wavefunctions is greater than or equal
to that for the symmetric combination.

13.3 Symmetrization and antisymmetrization (mathematical)

a. Show that any two-variable function can be written as the sum of a symmetric function and an
antisymmetric function.

b. Show that this is not true for functions of three variables. [Hint: Try the counterexample
f(x, y, z) = g(x).]

c. There is a function of three variables that is:

i. Antisymmetric under interchange of the first and second variables: f(x, y, z) = −f(y, x, z).

ii. Symmetric under interchange of the second and third variables: f(x, y, z) = f(x, z, y).

iii. Symmetric under interchange of the first and third variables: f(x, y, z) = f(z, y, x).

Find this function and show that it is unique.



Chapter 14

Conclusion

14.1 Critique
Write a critique of this course’s textbook, namely Winter’s Quantum Physics. Compare the approach
to quantum mechanics presented in this text with the approach used in lecture or by some other book
(perhaps the text you used in Physics 112: Modern Physics). Be specific: cite specific topics or even
specific equations to support your points. You may treat any aspect of the book: problems, pedagogy,
philosophy, choice of topics, even phraseology; but you must justify your opinions. Critiques that say
merely “I (dis)liked it” (regardless of the number of words used) will receive appropriate credit.

(This question is designed to encourage you to think of physics not as a set of questions with definite
answers, but as a subject with room for words as well as numbers, general ideas as well as simple
harmonic oscillators, and, above all, as a subject that you can have opinions about.)
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