The Klein-Gordon Propagator

Dan Styer, Oberlin College Physics Department, Oberlin, Ohio 44074
dstyer@physics.oberlin.edu

5 October 1999

This document fills in some of the details behind the discussion of amplitudes to go from place to place found in Richard Feynman's QED: The Strange Theory of Light and Matter (Princeton University Press, Princeton, New Jersey, 1985). Unlike Feynman's book, this document is technical. To understand it, you need to understand terms like "contour integral" and "residue".

The discussion I wish to elucidate is found on pages $87-91$ of $Q E D$, and presents amplitudes for the first two of the three basic actions, namely "a photon goes from place to place" and "an electron goes from place to place".

Feynman's so-called "polarization-free photon" and "spin-zero electron" are technically called "KleinGordon particles" of zero and finite mass, respectively. The "amplitude to go from place to place" that Feynman mentions is called the "Klein-Gordon propagator". An integral expression for this propagator is given in, for example, Claude Itzykson and Jean-Bernard Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980), page 35, equation (1-178), or in Kurt Gottfried and Victor Weisskopf, Concepts of Particle Physics (Oxford University Press, New York, 1986), volume II, page 230, equation (48) [note misprint: $d^{4} x$ should read $\left.d^{4} Q\right]$. Using the phase conventions of $Q E D$, the propagator to change space-time position by $x=(c \Delta t, \Delta \mathbf{r})=\left(x_{0}, \mathbf{x}\right)$ is

$$
\begin{equation*}
G_{F}(x)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot x} \frac{1}{p^{2}-m^{2}+i \epsilon} \tag{1}
\end{equation*}
$$

where $x \cdot y \equiv x_{0} y_{0}-\mathbf{x} \cdot \mathbf{y}$. The aim of this document is to show how the qualitative amplitude descriptions of $Q E D$ follow from this expression.

1 The energy integral

Write the propagator as

$$
\begin{equation*}
G_{F}(x)=\int \frac{d^{3} p}{(2 \pi)^{4}} e^{-i \mathbf{p} \cdot \mathbf{x}} \int d p_{0} e^{i p_{0} x_{0}} \frac{1}{p_{0}^{2}-\mathbf{p}^{2}-m^{2}+i \epsilon} \tag{2}
\end{equation*}
$$

Define $E=+\sqrt{\mathbf{p}^{2}+m^{2}}$, and then evaluate the energy integral

$$
\begin{equation*}
I \equiv \int d p_{0} e^{i p_{0} x_{0}} \frac{1}{p_{0}^{2}-E^{2}+i \epsilon}, \tag{3}
\end{equation*}
$$

using contour integration in the complex p_{0} plane. To locate the poles, write

$$
\begin{equation*}
p_{0}^{2}-E^{2}+i \epsilon=p_{0}^{2}-\left(E-\frac{i \epsilon}{2 E}\right)^{2}=\left[p_{0}+\left(E-\frac{i \epsilon}{2 E}\right)\right]\left[p_{0}-\left(E-\frac{i \epsilon}{2 E}\right)\right] \tag{4}
\end{equation*}
$$

Thus there are two poles: one just above the real axis and one just below. The first pole has

$$
\begin{equation*}
\text { location: } \quad-\left(E-\frac{i \epsilon}{2 E}\right) \quad \text { residue: } \quad-\frac{\exp \left\{-i(E-i \epsilon / 2 E) x_{0}\right\}}{2(E-i \epsilon / 2 E)}, \tag{5}
\end{equation*}
$$

while the second has

$$
\begin{equation*}
\text { location: } \quad+\left(E-\frac{i \epsilon}{2 E}\right) \quad \text { residue: } \quad+\frac{\exp \left\{+i(E-i \epsilon / 2 E) x_{0}\right\}}{2(E-i \epsilon / 2 E)} \tag{6}
\end{equation*}
$$

If $x_{0}>0$, we close the contour on the top half plane enclosing the first pole to find (in the limit $\epsilon \rightarrow 0$)

$$
\begin{equation*}
I=+2 \pi i\left(-\frac{e^{-i E x_{0}}}{2 E}\right) \tag{7}
\end{equation*}
$$

while if $x_{0}<0$, we close the contour on the bottom half plane enclosing the second pole to find

$$
\begin{equation*}
I=-2 \pi i\left(+\frac{e^{+i E x_{0}}}{2 E}\right) \tag{8}
\end{equation*}
$$

These two expressions can be written as one,

$$
\begin{equation*}
I=-2 \pi i \frac{e^{-i E\left|x_{0}\right|}}{2 E} \tag{9}
\end{equation*}
$$

whence we conclude

$$
\begin{equation*}
G_{F}(x)=-\frac{i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} e^{-i \mathbf{p} \cdot \mathbf{x}} \frac{e^{-i E\left|x_{0}\right|}}{E}, \quad \text { where } \quad E=+\sqrt{p^{2}+m^{2}} \tag{10}
\end{equation*}
$$

2 Propagator for massless particles

If $m=0$, then $E=|\mathbf{p}|$ and the above expression becomes

$$
\begin{equation*}
G_{F}(x)=-\frac{i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} e^{-i \mathbf{p} \cdot \mathbf{x}} \frac{e^{-i|\mathbf{p}|\left|x_{0}\right|}}{|\mathbf{p}|} \tag{11}
\end{equation*}
$$

For the case $x_{0} \neq 0$, this integral is evaluated in the appendix and is

$$
\begin{equation*}
G_{F}(x)=-\frac{i}{(2 \pi)^{2}} \frac{1}{\mathbf{x}^{2}-x_{0}^{2}}=-\frac{i}{(2 \pi)^{2}} \frac{1}{(\Delta \mathbf{r})^{2}-(c \Delta t)^{2}} \tag{12}
\end{equation*}
$$

Thus

$$
\begin{array}{llll}
\text { if } & (\Delta \mathbf{r})^{2}>(c \Delta t)^{2} & \text { (i.e. } v>c) & \text { then } G_{F} \sim-i \\
\text { if } & (\Delta \mathbf{r})^{2}<(c \Delta t)^{2} & \text { (i.e. } v<c) & \text { then } G_{F} \sim+i
\end{array}
$$

These amplitudes correspond to the two little arrows pointing to the right and to the left in figure 56 on page 90 of $Q E D$.

The remaining case is $(\Delta \mathbf{r})^{2}=(c \Delta t)^{2}$, that is $v=c$. In this case $x_{0}^{2}=\mathbf{x}^{2}$ and

$$
\begin{equation*}
G_{F}(x)=-\frac{i}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} e^{-i \mathbf{p} \cdot \mathbf{x}} \frac{e^{-i|\mathbf{p}||\mathbf{x}|}}{|\mathbf{p}|} \tag{13}
\end{equation*}
$$

Convert this integral into spherical coordinates (using $\mu=\cos (\theta))$ to find

$$
\begin{equation*}
G_{F}(x)=-\frac{i}{2(2 \pi)^{3}} 2 \pi \int_{0}^{\infty} p^{2} d p \int_{-1}^{+1} d \mu e^{-i p|\mathbf{x}| \mu} \frac{e^{-i p|\mathbf{x}|}}{p} \tag{14}
\end{equation*}
$$

The integral over μ is

$$
\begin{equation*}
\int_{-1}^{+1} d \mu e^{-i p|\mathbf{x}| \mu}=\frac{2 \sin (p|\mathbf{x}|)}{p|\mathbf{x}|} \tag{15}
\end{equation*}
$$

so

$$
\begin{align*}
G_{F}(x) & =-\frac{i}{(2 \pi)^{2}} \frac{1}{|\mathbf{x}|} \int_{0}^{\infty} d p \sin (p|\mathbf{x}|) e^{-i p|\mathbf{x}|} \tag{16}\\
& =-\frac{i}{(2 \pi)^{2}} \frac{1}{|\mathbf{x}|^{2}} \int_{0}^{\infty} d u \sin (u)(\cos (u)-i \sin (u))
\end{align*}
$$

Now, the integral

$$
\begin{equation*}
\int_{0}^{\infty} d u \sin (u) \cos (u) \quad \text { is bounded } \tag{17}
\end{equation*}
$$

whereas

$$
\begin{equation*}
\int_{0}^{\infty} d u \sin ^{2}(u) \quad \text { approaches infinity. } \tag{18}
\end{equation*}
$$

Thus for the remaining case $v=c$, we have

$$
\begin{equation*}
G_{F}(x)=-\frac{\text { (real positive infinity) }}{|\mathbf{x}|^{2}} . \tag{19}
\end{equation*}
$$

This amplitude corresponds to the big arrow pointing straight up in figure 56 on page 90 of $Q E D$.

Appendix: Fourier transform of the Yukawa Potential

Theorem: If

$$
\begin{equation*}
f(\mathbf{r})=\frac{e^{-k_{0} r}}{r} \quad \text { with } \quad k_{0}>0 \tag{20}
\end{equation*}
$$

and if

$$
\begin{align*}
\tilde{f}(\mathbf{k}) & =\int d^{3} r e^{-i \mathbf{k} \cdot \mathbf{r}} f(\mathbf{r}) \tag{21}\\
f(\mathbf{r}) & =\int \frac{d^{3} k}{(2 \pi)^{3}} e^{+i \mathbf{k} \cdot \mathbf{r}} \tilde{f}(\mathbf{k}) \tag{22}
\end{align*}
$$

then

$$
\begin{equation*}
\tilde{f}(\mathbf{k})=\frac{4 \pi}{k^{2}+k_{0}^{2}} \tag{23}
\end{equation*}
$$

Proof:

$$
\begin{align*}
\tilde{f}(\mathbf{k}) & =\int d^{3} r e^{-i \mathbf{k} \cdot \mathbf{r}} \frac{e^{-k_{0} r}}{r} \tag{24}\\
& =2 \pi \int_{0}^{\infty} r^{2} d r\left(\int_{-1}^{+1} d \mu e^{-i k r \mu}\right) \frac{e^{-k_{0} r}}{r} \quad(\text { where } \mu=\cos \theta) \tag{25}\\
& =2 \pi \int_{0}^{\infty} r^{2} d r\left(\frac{2 \sin (k r)}{k r}\right) \frac{e^{-k_{0} r}}{r} \tag{26}\\
& =\frac{4 \pi}{k} \int_{0}^{\infty} d r \sin (k r) e^{-k_{0} r} \tag{27}\\
& =\frac{4 \pi}{k} \Im m\left\{\int_{0}^{\infty} d r e^{\left(i k-k_{0}\right) r}\right\} \tag{28}\\
& =\frac{4 \pi}{k} \Im m\left\{\frac{e^{\left(i k-k_{0}\right) r}}{i k-k_{0}}\right\}_{r=0}^{\infty} \tag{29}\\
& =\frac{4 \pi}{k^{2}+k_{0}^{2}} \tag{30}
\end{align*}
$$

3 Propagator for massive particles

Returning to the very beginning of this discussion,

$$
\begin{equation*}
G_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{i p \cdot(x-y)} \frac{1}{p^{2}-m^{2}+i \epsilon} \tag{31}
\end{equation*}
$$

But, recognizing the geometric series,

$$
\begin{aligned}
\frac{1}{p^{2}-m^{2}+i \epsilon} & =\frac{1}{\left(p^{2}+i \epsilon\right)\left[1-m^{2} /\left(p^{2}+i \epsilon\right)\right]} \\
& =\frac{1}{\left(p^{2}+i \epsilon\right)}\left[1+\frac{m^{2}}{p^{2}+i \epsilon}+\frac{\left(m^{2}\right)^{2}}{\left(p^{2}+i \epsilon\right)^{2}}+\frac{\left(m^{2}\right)^{3}}{\left(p^{2}+i \epsilon\right)^{3}}+\cdots\right] .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
G_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{p^{2}+i \epsilon}+m^{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{\left(p^{2}+i \epsilon\right)^{2}}+\left(m^{2}\right)^{2} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{\left(p^{2}+i \epsilon\right)^{3}}+\cdots . \tag{32}
\end{equation*}
$$

Note that the first term in this series is nothing but the zero-mass propagator, which we will call

$$
\begin{equation*}
G_{F}^{(0)}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{p^{2}+i \epsilon} . \tag{33}
\end{equation*}
$$

I'm going to write the second integral in a funny way, using the four-dimensional Dirac delta function $\delta^{(4)}(p)$:

$$
\begin{equation*}
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{\left(p^{2}+i \epsilon\right)^{2}}=\int d^{4} p^{\prime} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot x} e^{-i p^{\prime} \cdot y}}{\left(p^{2}+i \epsilon\right)\left(p^{2}+i \epsilon\right)} \delta^{(4)}\left(p^{\prime}-p\right) . \tag{34}
\end{equation*}
$$

Use the integral expression

$$
\begin{equation*}
\delta^{(4)}\left(p^{\prime}-p\right)=\int \frac{d^{4} x^{\prime}}{(2 \pi)^{4}} e^{i\left(p^{\prime}-p\right) \cdot x^{\prime}} \tag{35}
\end{equation*}
$$

for that delta function to write

$$
\begin{equation*}
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{\left(p^{2}+i \epsilon\right)^{2}}=\int d^{4} x^{\prime} \int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} \frac{e^{i p^{\prime} \cdot\left(x^{\prime}-y\right)}}{\left(p^{\prime 2}+i \epsilon\right)} \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot\left(x-x^{\prime}\right)}}{\left(p^{2}+i \epsilon\right)} \tag{36}
\end{equation*}
$$

Recognizing the two zero-mass propagators on the right, we write

$$
\begin{equation*}
\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{e^{i p \cdot(x-y)}}{\left(p^{2}+i \epsilon\right)^{2}}=\int d^{4} x^{\prime} G_{F}^{(0)}\left(x-x^{\prime}\right) G_{F}^{(0)}\left(x^{\prime}-y\right) \tag{37}
\end{equation*}
$$

In a similar way, the third integral in the series (the one multiplying $\left(m^{2}\right)^{2}$) can be written as a double integral of a product of three zero-mass propagators, and so forth. We conclude that

$$
\begin{align*}
G_{F}(x-y)= & G_{F}^{(0)}(x-y) \tag{38}\\
& +m^{2} \int d^{4} x^{\prime} G_{F}^{(0)}\left(x-x^{\prime}\right) G_{F}^{(0)}\left(x^{\prime}-y\right) \\
& +\left(m^{2}\right)^{2} \int d^{4} x^{\prime} \int d^{4} x^{\prime \prime} G_{F}^{(0)}\left(x-x^{\prime}\right) G_{F}^{(0)}\left(x^{\prime}-x^{\prime \prime}\right) G_{F}^{(0)}\left(x^{\prime \prime}-y\right) \\
& +\cdots .
\end{align*}
$$

This is precisely the "boxes within boxes" form described in footnote 3 on page 91 of $Q E D$.
Note that the analysis of this section links the finite-mass propagator to the zero-mass propagator without ever using the previously-obtained explicit form of the zero-mass propagator.

