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This document fills in some of the details behind the discussion of amplitudes to go from place to place
found in Richard Feynman’s QED: The Strange Theory of Light and Matter (Princeton University Press,
Princeton, New Jersey, 1985). Unlike Feynman’s book, this document is technical. To understand it, you
need to understand terms like “contour integral” and “residue”.

The discussion I wish to elucidate is found on pages 87–91 of QED, and presents amplitudes for the first
two of the three basic actions, namely “a photon goes from place to place” and “an electron goes from place
to place”.

Feynman’s so-called “polarization-free photon” and “spin-zero electron” are technically called “Klein-
Gordon particles” of zero and finite mass, respectively. The “amplitude to go from place to place” that
Feynman mentions is called the “Klein-Gordon propagator”. An integral expression for this propagator is
given in, for example, Claude Itzykson and Jean-Bernard Zuber, Quantum Field Theory (McGraw-Hill, New
York, 1980), page 35, equation (1-178), or in Kurt Gottfried and Victor Weisskopf, Concepts of Particle
Physics (Oxford University Press, New York, 1986), volume II, page 230, equation (48) [note misprint: d4x

should read d4Q]. Using the phase conventions of QED, the propagator to change space-time position by
x = (c∆t,∆r) = (x0,x) is

GF (x) =
∫

d4p

(2π)4
eip·x

1
p2 −m2 + iε

, (1)

where x · y ≡ x0y0 − x · y. The aim of this document is to show how the qualitative amplitude descriptions
of QED follow from this expression.

1 The energy integral

Write the propagator as

GF (x) =
∫

d3p

(2π)4
e−ip·x

∫
dp0 e

ip0x0
1

p2
0 − p2 −m2 + iε

. (2)
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Define E = +
√

p2 +m2 , and then evaluate the energy integral

I ≡
∫
dp0 e

ip0x0
1

p2
0 − E2 + iε

, (3)

using contour integration in the complex p0 plane. To locate the poles, write

p2
0 − E2 + iε = p2

0 −
(
E − iε

2E

)2

=
[
p0 +

(
E − iε

2E

)][
p0 −

(
E − iε

2E

)]
. (4)

Thus there are two poles: one just above the real axis and one just below. The first pole has

location: −
(
E − iε

2E

)
residue: − exp {−i (E − iε/2E)x0}

2 (E − iε/2E)
, (5)

while the second has

location: +
(
E − iε

2E

)
residue: +

exp {+i (E − iε/2E)x0}
2 (E − iε/2E)

. (6)

If x0 > 0, we close the contour on the top half plane enclosing the first pole to find (in the limit ε→ 0)

I = +2πi
(
−e
−iEx0

2E

)
, (7)

while if x0 < 0, we close the contour on the bottom half plane enclosing the second pole to find

I = −2πi
(

+
e+iEx0

2E

)
. (8)

These two expressions can be written as one,

I = −2πi
e−iE|x0|

2E
, (9)

whence we conclude

GF (x) = − i
2

∫
d3p

(2π)3
e−ip·x

e−iE|x0|

E
, where E = +

√
p2 +m2 . (10)

2 Propagator for massless particles

If m = 0, then E = |p| and the above expression becomes

GF (x) = − i
2

∫
d3p

(2π)3
e−ip·x

e−i|p||x0|

|p|
. (11)

For the case x0 6= 0, this integral is evaluated in the appendix and is

GF (x) = − i

(2π)2

1
x2 − x2

0

= − i

(2π)2

1
(∆r)2 − (c∆t)2

. (12)

Thus
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if (∆r)2 > (c∆t)2 (i.e. v > c) then GF ∼ −i
if (∆r)2 < (c∆t)2 (i.e. v < c) then GF ∼ +i

These amplitudes correspond to the two little arrows pointing to the right and to the left in figure 56 on
page 90 of QED.

The remaining case is (∆r)2 = (c∆t)2, that is v = c. In this case x2
0 = x2 and

GF (x) = − i
2

∫
d3p

(2π)3
e−ip·x

e−i|p||x|

|p|
. (13)

Convert this integral into spherical coordinates (using µ = cos(θ)) to find

GF (x) = − i

2(2π)3
2π
∫ ∞

0

p2 dp

∫ +1

−1

dµ e−ip|x|µ
e−ip|x|

p
. (14)

The integral over µ is ∫ +1

−1

dµ e−ip|x|µ =
2 sin(p|x|)

p|x|
, (15)

so

GF (x) = − i

(2π)2

1
|x|

∫ ∞
0

dp sin(p|x|)e−ip|x| (16)

= − i

(2π)2

1
|x|2

∫ ∞
0

du sin(u)(cos(u)− i sin(u)).

Now, the integral ∫ ∞
0

du sin(u) cos(u) is bounded, (17)

whereas ∫ ∞
0

du sin2(u) approaches infinity. (18)

Thus for the remaining case v = c, we have

GF (x) = − (real positive infinity)
|x|2

. (19)

This amplitude corresponds to the big arrow pointing straight up in figure 56 on page 90 of QED.

Appendix: Fourier transform of the Yukawa Potential

Theorem: If

f(r) =
e−k0r

r
with k0 > 0, (20)

and if

f̃(k) =
∫
d3r e−ik·rf(r) (21)

f(r) =
∫

d3k

(2π)3
e+ik·rf̃(k), (22)
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then
f̃(k) =

4π
k2 + k2

0

. (23)

Proof:

f̃(k) =
∫
d3r e−ik·r

e−k0r

r
(24)

= 2π
∫ ∞

0

r2 dr

(∫ +1

−1

dµ e−ikrµ
)
e−k0r

r
(where µ = cos θ) (25)

= 2π
∫ ∞

0

r2 dr

(
2 sin(kr)

kr

)
e−k0r

r
(26)

=
4π
k

∫ ∞
0

dr sin(kr)e−k0r (27)

=
4π
k
=m

{∫ ∞
0

dr e(ik−k0)r

}
(28)

=
4π
k
=m

{
e(ik−k0)r

ik − k0

}∞
r=0

(29)

=
4π

k2 + k2
0

(30)

3 Propagator for massive particles

Returning to the very beginning of this discussion,

GF (x− y) =
∫

d4p

(2π)4
eip·(x−y) 1

p2 −m2 + iε
. (31)

But, recognizing the geometric series,

1
p2 −m2 + iε

=
1

(p2 + iε)[1−m2/(p2 + iε)]

=
1

(p2 + iε)

[
1 +

m2

p2 + iε
+

(m2)2

(p2 + iε)2
+

(m2)3

(p2 + iε)3
+ · · ·

]
.

Therefore

GF (x− y) =
∫

d4p

(2π)4

eip·(x−y)

p2 + iε
+m2

∫
d4p

(2π)4

eip·(x−y)

(p2 + iε)2
+ (m2)2

∫
d4p

(2π)4

eip·(x−y)

(p2 + iε)3
+ · · · . (32)

Note that the first term in this series is nothing but the zero-mass propagator, which we will call

G
(0)
F (x− y) =

∫
d4p

(2π)4

eip·(x−y)

p2 + iε
. (33)

I’m going to write the second integral in a funny way, using the four-dimensional Dirac delta function
δ(4)(p): ∫

d4p

(2π)4

eip·(x−y)

(p2 + iε)2
=
∫
d4p′

∫
d4p

(2π)4

eip·xe−ip
′·y

(p2 + iε)(p′2 + iε)
δ(4)(p′ − p). (34)

4



Use the integral expression

δ(4)(p′ − p) =
∫

d4x′

(2π)4
ei(p

′−p)·x′ (35)

for that delta function to write∫
d4p

(2π)4

eip·(x−y)

(p2 + iε)2
=
∫
d4x′

∫
d4p′

(2π)4

eip
′·(x′−y)

(p′2 + iε)

∫
d4p

(2π)4

eip·(x−x
′)

(p2 + iε)
. (36)

Recognizing the two zero-mass propagators on the right, we write∫
d4p

(2π)4

eip·(x−y)

(p2 + iε)2
=
∫
d4x′G

(0)
F (x− x′)G(0)

F (x′ − y). (37)

In a similar way, the third integral in the series (the one multiplying (m2)2) can be written as a double
integral of a product of three zero-mass propagators, and so forth. We conclude that

GF (x− y) = G
(0)
F (x− y) (38)

+m2

∫
d4x′G

(0)
F (x− x′)G(0)

F (x′ − y)

+(m2)2

∫
d4x′

∫
d4x′′G

(0)
F (x− x′)G(0)

F (x′ − x′′)G(0)
F (x′′ − y)

+ · · · .

This is precisely the “boxes within boxes” form described in footnote 3 on page 91 of QED.

Note that the analysis of this section links the finite-mass propagator to the zero-mass propagator without
ever using the previously-obtained explicit form of the zero-mass propagator.

5


