
Working with Amplitudes

The first section of this chapter shows that the mathematical representation 
of amplitude cannot be as simple as a real number, but must be at least 
as complicated as a two-dimensional arrow. If you’re willing to accept this 
as fact, then you may skip that rather technical and involved section. But 
in no case should you skip over the second section of this chapter, which 
makes a simple but subtle and important general point.

11.1 Amplitude is represented by an arrow

I’m going to introduce one more type of analyzer; the “front-back 
analyzer” (also called the “y analyzer”). This will be the last new analyzer, 
I promise. The left half of this analyzer is just like the left half of 
a traditional Stern-Gerlach analyzer, with its traditional non-uniform 
magnetic field. But while the right half of the traditional Stern-Gerlach 
analyzer contains only plumbing to make sure the atoms come out parallel 
to the sides of the box, the right half of the front-back analyzer contains 
also a magnetic field that changes direction slowly from place to place. 
Along the path towards the upper exit, the magnetic field starts by pointing 
straight up. A little farther on it tilts a bit to the right. The tilt angle 
of the field increases gradually until, just before the exit, the field points 
directly to the right. The path towards the lower exit is similar, except 
that in this case the field starts out pointing down and gradually tilts until 
it points directly to the left.

How does this tilting field affect a passing atom? Only experiment can 
tell for sure, but the following arguments are suggestive and turn out to 
give the correct answer. An atom that leaves the left half of the front—back 
analyzer through the upper branch has mz = +mB, that is, its magnetic 
arrow is “more-or-less pointing up”. (I use the qualifier “more-or-less” 
just to remind you that atomic magnetic arrows don’t point in the same
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tilting magnetic field

non-uniform magnetic field

definite manner that sticks do.) So when it encounters the tilting magnetic 
field, the field is pointing in the same direction as the magnetic arrow. It 
seems reasonable that, as the atom gradually makes its way through the 
corridor of tilting field, the atom’s magnetic arrow will be dragged right 
along with the field. Thus when the atom leaves the upper exit its arrow 
points directly to the right. In other words, an atom leaving the upper exit 
leaves with a definite value for the projection of its magnetic arrow on the 
y axis, namely my = -t-wig. (Note that this atom has a definite value of 
my, so it no longer has a definite value of m, or m^.) Similarly, an atom 
leaving the lower exits leaves with my = —ms. As before, we package this 
apparatus up into a box inscribed with a distinctive symbol.

Repeated measurement experiments with the front-back analyzer 

Experiment 11.A.1. Measurement of m^,, then my again.
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This experiment behaves exactly like the repeated measurement experi­
ment 4.1 on page 23. An atom that leaves the + exit of the first analyzer 
(i.e. one with my = +mB leaving the first analyzer) will always leave the
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+ exit of the second analyzer (i.e. it still has my = +mB when entering
the second analyzer). This experiment just confirms a very reasonable
expectation.

Experiment 11.A.2. Measurement of my, then my with a tilted front-back
analyzer.

An atom found to have my = +mB at the first analyzer is found to have 
my = +mB at the second analyzer, regardless of the orientation angle 9. 
This is reasonable because tilting the front-back analyzer doesn’t change 
the character of the output atoms: their magnetic arrows are “more-or- 
less” pointing front or back, not up or down, so when the analyzer is 
tilted they’re still pointing front or back.

Experiment 11.A.3. Measurement of mz, then my with a tilted front-back 
analyzer.

We still expect that tilting the front-back analyzer will have no effect. 
In other words, we still expect that the statistics of exit from the second 
analyzer will be independent of the orientation angle 6. Furthermore, 
because the direction “straight up” bears the same relation to the direction 
“directly right” as it does to the direction “directly left” you might expect 
that an atom with = +mB will have the same relation to an atom with 
my = +mB as it does to an atom with my = —m^. Experiments show both 
of these expectations to be correct: The statistics of exit from the second 
analyzer are that half leave the + exit and half leave the — exit, regardless 
of the angle 6.
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Of course, tilting the second analyzer to the right by 17° is equivalent 
to tilting the first analyzer to the left by 17°. We conclude that if an atom 
has a definite value for the projection of its magnetic arrow on any axis 
in the (x, z) plane (that is, an atom in any of the states discussed before 
this chapter began: states like m^ = +wb, = —wg, W(_x) = -i-mg, or 
m^go = —ms) and if the value of my is measured, then the chances are 
half-and-half that the atom will be found to have my — -f-wjg or to have 
my = —mg.

Interference experiments with the front-back analyzer

We can make an interferometer from a front-back analyzer just as we did 
from a Stern—Gerlach analyzer.

0
0
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I will describe several experiments using the apparatus sketched below. 
In all cases the input atom has m^ = -t-wig. The atom passes through a 
vertical front-back interferometer, and then passes into a regular Stern- 
Gerlach analyzer (not a front-back analyzer) tilted at an angle 9 relative 
to the vertical. An atom leaving the -f- exit of this analyzer (in which case 
it has me = +mg) is considered output; an atom leaving the — exit is 
ignored. The atom is not watched at either of the branches.
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Experiment ll.B.l. Branch a is blocked.

The probability of passing from input to intermediate is
The intermediate atom has my = —mg.
The probability of passing from intermediate to output is
The overall probability of passing from input to output is 5 x 5 = ^.

Experiment 11.B.2. Branch b is blocked.

This is the same as experiment ll.B.l except that the intermediate 
atom has my = +mB.

Experiment 11.B.3. Neither branch is blocked.

The probability of passing from input to intermediate is 1.
The intermediate atom has m^ = +mB.
The probability of passing from intermediate to output is cos^(0/2). 

(See figure 4.1 on page 27.)
The overall probability of passing from input to output is cos^(0/2).

Given the results of these three experiments, we attempt to assign 
amplitude arrows to the two paths “input to output through branch a” 
and “input to output through branch b”. The amplitude arrow assigned 
to “input to output through either branch” will be the sum of these 
two arrows. We don’t know the orientations of the arrows, but we do 
know that the magnitudes of the three arrows must be j, and eos(0/2) 
respectively.

Now, it is entirely possible (as demonstrated in the figure below) to find 
two arrows of magnitude j and 5 that add up to produce a sum arrow of 
magnitude cos(0/2) for any angle 9.

1/2
plus equals

a b cos(0/2)

But it is quite impossible to find two real numbers of magnitude 5 (that is, 
either +5 or —j) that add up to produce a number continuously varying 
with angle 9: these numbers must add up to either 0 or 1.

We eonclude that whatever mathematical entity is used to represent an 
amplitude, it must be at least as complicated as a two-dimensional arrow. 
Of course, it might be even more complicated: for example an arrow in 
three dimensions. But as far as anyone knows, two-dimensional arrows 
are sufficient.



11.2 Amplitudes for the Einstein-Podolsky-Rosen experiment

This section is much shorter and much less technical than the previous 
section, but the result is more important. Whenever I have discussed 
amplitudes, I have been careful to associate an amplitude with an action 
(also called “a process”) rather than with a particle. For example, I would 
talk about “the amplitude to go from input to output through branch a” 
and never “the amplitude the particle has if it went through branch a”. 
The latter phrase, I am sure you realize, contains a misimpression about 
the nature of quantal interference (see page 78). However, every example I 
have given so far involves a single particle, so despite my care it is easy to 
get the mistaken impression that an amplitude arrow must be associated 
with a specific particle, and that it acts somehow like an arrow hanging 
off of that particle. This section gives an example in which the action 
involves a pair of particles, showing concretely that amplitudes are not 
associated with individual particles.*

Recall the first Einstein-Podolsky-Rosen experiment, described in sec­
tion 6.1 (page 40) and represented on the next page by figure 11.1. The 
initial condition is given by state A in the figure. Possible final states are 
given by states B, C, and D. Remember from section 6.1 that the two 
atoms always leave their respective analyzers from opposite exits. In terms 
of the figure, this means that there is some amplitude for going from state 
A to state B, and some amplitude for going from state A to state C, but 
there is no amplitude for going from state A to state D.

Now, look at this from the perspective of the atom released from the 
source and flying to the right towards its detector. If it were in a state 
like mx = +mB, then it would have some amplitude to leave its detector 
through the + exit and some amplitude to leave its detector through the — 
exit. Similarly for the atom flying to the left. If we assigned an amplitude 
to each of the individual particles in the manner suggested, then it would 
be impossible to prevent the system from ending up in state D of the 
flgure. But in fact the system never does end up in state D. We conclude 
that one cannot assign one amplitude to an act performed by the atom 
on the right and a second amplitude to an act performed by the atom on 
the left. Instead, we must assign a single amplitude to an action by the 
pair of atoms.

When the two atoms are flying from the source to their analyzers, it is 
not possible to assign each one to a state like mx = +mB or mx = -mB. 
Instead the two particles together must be assigned to a single state. Such 
states are called entangled states. This is an excellent name,^ because
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In technical terms, this example shows that a wavefunction is a function in configuration space 
not position space.

^ It was coined by Schrödinger in 1935.
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Fig. 11.1. Various states for two atoms in the first Einstein Podolsky Rosen 
experiment.

it suggests quite graphically (and quite correctly) that what happens to 
one particle is mixed up with what happens to the other. Entóngled 
states come up not only in abstruse discussions on the foundations of 
quantum mechanics, but also in the practical day-to-day work of atomic 
and molecular physics. If entangled states were to go away, so would 
most of chemistry.

11.3 Problems

11.1 Other schemes for amplitudes. Mr. Parker is uncomfortable with the 
idea that amplitudes must be represented by two-dimensional arrows. 
He uses the symbol to represent “the amplitude to pass through 
branch a”, the symbol Ab to represent “the amplitude to pass through 
branch b”, and the symbol ^a.b to represent “the amplitude to pass 
through both branches”.
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(a) “I know that we want to have a mathematical representation 
for amplitude in which

^a,b = + ^b,

and I know that we must sometimes have two non-zero ampli­
tudes summing to zero. But why can’t we represent amplitudes 
by real numbers and assume that the probability is the absolute 
value of the amplitude rather than the square of the amplitude?” 
Convince Mr. Parker that no such scheme is consistent with the 
facts outlined in section 11.1.

(b) “All right, you’ve convinced me,” says Mr. Parker. “But what 
about a scheme in which

^a,b = (^a)^ + i^bY
which also ensures that probabilities are always positive?”

11.2 Magnitudes of amplitude arrows. Find the magnitude of the am­
plitude arrow associated with going from state A to state B in 
figure 11.1. Similarly for going from state A to state C and from 
state A to state D. Do not attempt to find the directions of these 
arrows.

11.3 Distant measurements. “I’ve got it now!” says Mr. Parker. “I 
was wrong back in problem 6.2 when I suggested that the two 
atoms in experiment 6.1 were produced in the states = +mB and 
mx = -mB. But now I see that they were produced in the states 
my = +mB and my — —mB. That explains all the observations!” 
Show that Mr. Parker’s new suggestion is still not consistent with 
the observation in experiment 6.1 that the two atoms always leave 
through exits of the opposite sign.

11.4 What if they weren’t entangled? Suppose that, in figure 11.1, the 
atom on the right had probability i of leaving either the + or the 
— exit of its analyzer, and similarly for the atom on the left. (This 
supposition is correct). Suppose also that the actions of the two 
atoms were not entangled. (That is, the actions were uncorrelated — 
this supposition is not correct.) Under these assumptions, what would 
be the probability of beginning in state A and ending in state D?

11.5 Measurement and entangled states. Interpret the measurement ex­
periments of figure 10.1 (page 80) in terms of entangled states. In 
particular, show that it is not possible to assign one amplitude for 
the exit taken by the atom and a second amplitude for the final 
position of the photon. Instead, one must use a single amplitude to 
describe both the atom and the photon.


