Derivation of Isobaric Ensemble

Dan Styer, 17 March 2017, revised 20 March 2018

Microstate x of system under study means, for example, positions and momenta of all atoms plus volume of balloon.
Macrostate of system under study specified by variables (T, p, N).
What is the probability $\mathcal{P}(x)$ that system under study is in microstate x ?
Total energy is bath energy plus system energy; total volume is bath volume plus system volume

$$
E_{T}=E_{B}+H(\mathrm{x}) ; \quad V_{T}=V_{B}+V(\mathrm{x})
$$

As with the canonical ensemble

$$
\frac{\mathcal{P}\left(\mathrm{x}_{2}\right)}{\mathcal{P}\left(\mathrm{x}_{1}\right)}=e^{\left[S_{B}(2)-S_{B}(1)\right] / k_{B}}
$$

As system under study changes from state x_{1} to x_{2}, bath changes through

$$
\begin{aligned}
d S_{B} & =\frac{1}{T_{B}}\left(d E_{B}+p_{B} d V_{B}-\mu_{B} d N_{B}\right) \\
\Delta S_{B} & =\frac{1}{T_{B}}\left(\Delta E_{B}+p_{B} \Delta V_{B}\right)=-\frac{1}{T_{B}}\left(\Delta E+p_{B} \Delta V\right)
\end{aligned}
$$

so

$$
\frac{\mathcal{P}\left(\mathrm{x}_{2}\right)}{\mathcal{P}\left(\mathrm{x}_{1}\right)}=e^{-\left[\left\{H\left(\mathrm{x}_{2}\right)+p_{B} V\left(\mathrm{x}_{2}\right)\right\}-\left\{H\left(\mathrm{x}_{1}\right)+p_{B} V\left(\mathrm{x}_{1}\right)\right\}\right] / k_{B} T_{B}}
$$

But $T_{B}=T$ of system under study, and $p_{B}=p$ of system under study. All references to the bath have vanished. Using separation of variables

$$
\frac{\mathcal{P}\left(\mathrm{x}_{1}\right)}{e^{-\left\{H\left(\mathrm{x}_{1}\right)+p V\left(\mathrm{x}_{1}\right)\right\} / k_{B} T}}=\frac{\mathcal{P}\left(\mathrm{x}_{2}\right)}{e^{-\left\{H\left(\mathrm{x}_{2}\right)+p V\left(\mathrm{x}_{2}\right)\right\} / k_{B} T}} \equiv \frac{1}{\Upsilon(T, p, N)}
$$

and

$$
\mathcal{P}(\mathrm{x})=\frac{e^{-\{H(\mathrm{x})+p V(\mathrm{x})\} / k_{B} T}}{\Upsilon(T, p, N)}
$$

The isobaric partition function is the normalization factor

$$
\Upsilon(T, p, N)=\sum_{\mathrm{x}} e^{-\beta\{H(\mathrm{x})+p V(\mathrm{x})\}}
$$

where now the sum over microstates includes a sum (actually integral) over microstates with different $V(x)$. Exactly what is meant by a "sum over all states" depends on the system under study. For classical atoms modeled as point particles

$$
\Upsilon(T, p, N)=\frac{1}{N!h_{0}^{3 N}} \int_{0}^{\infty} d V \int d \Gamma e^{-\{H(\Gamma)+p V\} / k_{B} T}
$$

where the right-hand integral extends over all phase space.

What is the connection to thermodynamics?

Interpret the thermodynamic volume V as $\langle V(\mathrm{x})\rangle$:

$$
\left.V=\langle V(\mathrm{x})\rangle=\frac{\sum_{\mathrm{x}} V(\mathrm{x}) e^{-\beta\{H(\mathrm{x})+p V(\mathrm{x})\}}}{\sum_{\mathrm{x}} e^{-\beta\{H(\mathrm{x})+p V(\mathrm{x})\}}}=-\frac{1}{\beta} \frac{\partial}{\partial p} \ln \left\{\sum_{\mathrm{x}} e^{-\beta\{H(\mathrm{x})+p V(\mathrm{x})\}}\right\}\right)_{T, N}
$$

Comparison of this equation to the corresponding thermodynamic equation,

$$
\left.\left.V=-k_{B} T \frac{\partial \ln \Upsilon}{\partial p}\right)_{T, N} \quad \text { to } \quad V=\frac{\partial G}{\partial p}\right)_{T, N}
$$

leads to the identification

$$
G(T, p, N)=-k_{B} T \ln \Upsilon(T, p, N)
$$

Additional reasoning results in (1) the interpretation of pressure as control parameter for volume and (2) a dispersion-susceptibility relation

$$
\Delta V \sim \sqrt{\left.\frac{\partial V}{\partial p}\right)_{T, N}} \sim \sqrt{\kappa_{T}}
$$

This equation shows that in the thermodynamic limit the spread of volumes grows small in the sense that

$$
\frac{\Delta V}{\langle V(\mathrm{x})\rangle} \rightarrow 0
$$

