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heat and particle bath at
     temperature TB
     chemical potential µB

adiabatic walls

system
under
study

thermalizing, rigid, porous walls

Microstate x of system under study means, for example, positions and momenta of all atoms plus number

of atoms, or direction of all spins, plus number of spins.

Macrostate of system under study specified by variables (T, V, µ).

What is the probability P(x) that system under study is in microstate x?

Total energy is bath energy plus system energy; total number is bath number plus system number

ET = EB +H(x); NT = NB +N(x).

As with the canonical ensemble

P(x2)

P(x1)
= e[SB(2)−SB(1)]/kB .

As system under study changes from state x1 to x2, bath changes through

dSB =
1

TB
(dEB + pB dVB − µB dNB)

∆SB =
1

TB
(∆EB − µB ∆NB) = − 1

TB
(∆E − µB ∆N)

so

P(x2)

P(x1)
= e−[{H(x2)−µBN(x2)}−{H(x1)−µBN(x1)}]/kBTB .

But TB = T of system under study, and µB = µ of system under study. All references to the bath have

vanished. Using separation of variables

P(x1)

e−{H(x1)−µN(x1)}/kBT
=

P(x2)

e−{H(x2)−µN(x2)}/kBT
≡ 1

Ξ(T, V, µ)

and

P(x) =
e−{H(x)−µN(x)}/kBT

Ξ(T, V, µ)
.

The grand canonical partition function is the normalization factor

Ξ(T, V, µ) =
∑
x

e−β{H(x)−µN(x)},

where now the sum over microstates includes a sum over microstates with different N(x). Exactly what is

meant by a “sum over all states” depends on the system under study. For classical atoms modeled as point

particles

Ξ(T, V, µ) =

∞∑
N=0

1

N !h3N
0

∫
dΓ e−{H(Γ)−µN}/kBT

where the integral extends over all phase space.



What is the connection to thermodynamics?

Interpret the thermodynamic number N as 〈N(x)〉:

N = 〈N(x)〉 =

∑
x

N(x)e−β{H(x)−µN(x)}

∑
x

e−β{H(x)−µN(x)}
=

1

β

∂

∂µ
ln

{∑
x

e−β{H(x)−µN(x)}

})
T,V

Comparison of this equation to the corresponding thermodynamic equation,

N = kBT
∂ ln Ξ

∂µ

)
T,V

to N = − ∂Π

∂µ

)
T,V

,

leads to the identification

Π(T, V, µ) = −kBT ln Ξ(T, V, µ).

Additional reasoning results in (1) the interpretation of chemical potential as control parameter for

number and (2) a dispersion-susceptibility relation

∆N ∼

√
∂N

∂µ

)
T,V

∼
√
κT .

This equation shows that in the thermodynamic limit the spread of particle number grows small in the sense

that
∆N

〈N(x)〉
→ 0.


