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High temperature behavior: kBT � ε; βε� 1; e−βε ≈ 1
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Low temperature behavior: kBT � ε; βε� 1; e−βε ≈ 0
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This is a very slowly increasing function of T : It not only has zero slope at T = 0, but also zero curvature
at T = 0, zero third derivative at T = 0, and in fact all derivatives of cint

V (T ) are zero at T = 0:
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The maximum of this curve is in the vicinity of the characteristic temperature ε/kB , although it would be
an amazing coincidence if the maximum were exactly at that point. This curve is not symmetric. It falls
off rapidly (exponentially) on the low-temperature side and slowly (algebraically) on the high-temperature
side.


