Schottky anomaly

$$
\begin{aligned}
\zeta(T) & =\sum_{r=1}^{2} e^{-\beta \epsilon_{r}}=1+e^{-\beta \epsilon} \\
e^{\mathrm{int}}(T) & =-\frac{\partial \ln \zeta}{\partial \beta}=-\frac{-\epsilon e^{-\beta \epsilon}}{1+e^{-\beta \epsilon}}=\epsilon \frac{1}{1+e^{\beta \epsilon}} \\
c_{V}^{\mathrm{int}}(T) & =\frac{\partial e^{\mathrm{int}}}{\partial T}=\frac{\partial \beta}{\partial T} \frac{\partial e^{\mathrm{int}}}{\partial \beta} \\
& =\left(-\frac{1}{k_{B} T^{2}}\right) \epsilon\left(-\frac{\epsilon e^{\beta \epsilon}}{\left(1+e^{\beta \epsilon}\right)^{2}}\right) \\
& =k_{B}\left(\frac{\epsilon}{k_{B} T}\right)^{2} \frac{e^{-\epsilon / k_{B} T}}{\left(1+e^{\left.-\epsilon / k_{B} T\right)^{2}}\right.}
\end{aligned}
$$

High temperature behavior: $k_{B} T \gg \epsilon ; \beta \epsilon \ll 1 ; e^{-\beta \epsilon} \approx 1$

$$
c_{V}^{\mathrm{int}}(T) \approx \frac{k_{B}}{4}\left(\frac{\epsilon}{k_{B} T}\right)^{2}
$$

Low temperature behavior: $k_{B} T \ll \epsilon ; \beta \epsilon \gg 1 ; e^{-\beta \epsilon} \approx 0$

$$
c_{V}^{\mathrm{int}}(T) \approx k_{B}\left(\frac{\epsilon}{k_{B} T}\right)^{2} e^{-\epsilon / k_{B} T}
$$

This is a very slowly increasing function of T : It not only has zero slope at $T=0$, but also zero curvature at $T=0$, zero third derivative at $T=0$, and in fact all derivatives of $c_{V}^{\mathrm{int}}(T)$ are zero at $T=0$:

$$
\frac{\partial^{n} c_{V}^{\mathrm{int}}}{\partial T^{n}}(0)=0 \quad \text { for } n=0,1,2, \ldots
$$

The maximum of this curve is in the vicinity of the characteristic temperature ϵ / k_{B}, although it would be an amazing coincidence if the maximum were exactly at that point. This curve is not symmetric. It falls off rapidly (exponentially) on the low-temperature side and slowly (algebraically) on the high-temperature side.

