Simple harmonic oscillator
The SHO has non-degenerate levels with €, = (n + %)hw forn=0,1,2,....
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b. The internal heat capacity is
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c. As is often the case, it is easier to derive this result than to interpret it.

Low temperature behavior: kpT < hw; Bhw > 1; e 97 =~ 0, so
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As in the Schottky case, this is very flat at T' = 0.



High temperature behavior: kpT > hw; fhw < 1; e PP x~ 1. But if we just leave it like this, we get
¢t (T) ~ 0(1/0), which is not helpful. We need a better approximation for e =5«
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This result is good enough to tell us that

when T —o0, z-—0, so " — kg,

the classical equipartition result.

d. But we can also go on to get the leading order quantal corrections to equipartition:
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The leading order correction is negative, so as the temperature goes down, the heat capacity will start off

by falling below the equipartition line ¢ (T) = kp.



e. So the graph is
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