
Denaturization of DNA

In this solution I record every physically important point but I sometimes skip mathematical steps.

a. The effective Hamiltonian H gives e−βH as a product, with a factor of

eβε for each segment in the helical state [hi = 1],

q for each segment in the melted state [hi = 0],

r for each junction from helical to melted or vice versa [(hi − hi−1)2 = 1].

Hence

e−βH =

N∏
i=1

eβεhiq(1−hi)r(hi−hi−1)
2

= exp

{
βε

N∑
i=1

hi + ln q

N∑
i=1

(1− hi) + ln r

N∑
i=1

(hi − hi−1)2

}
.

(We arbitrarily pick h0 = h1 to give the proper edge effect at i = 1. This choice of boundary condition will

have no effect on bulk properties in the thermodynamic limit.) And

ZN (T, ε, r) =
∑
states

e−βH =

1∑
h1=0

1∑
h2=0

· · ·
1∑

hN=0

N∏
i=1

eβεhiq(1−hi)r(hi−hi−1)
2

.

b. Use the slick trick! By definition

θ(T ) =

∑
states

(∑
i

hi/N

)
e−βH∑

states

e−βH
, but

∂ lnZ

∂ε
=

β
∑
states

(∑
i

hi

)
e−βH

Z
,

so

θ(T ) = − 1

N

∂F

∂ε
.

Similarly

J(T ) =

∑
states

(∑
i

(hi − hi−1)2

)
e−βH∑

states

e−βH
, but

∂ lnZ

∂r
=

1

r

∑
states

(∑
i

(hi − hi−1)2

)
e−βH

Z
,

so

J(T ) = − r

kBT

∂F

∂r
.

c.

ZhN+1 = ZhN e
βε + ZmN eβεr

ZmN+1 = ZhN qr + ZmN q
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d. As with the Ising chain, in the thermodynamic limit

f(T, ε, r) = lim
N→∞

FN (T, ε, r)

N
= −kBT lnλA

where λA is the largest eigenvalue of the transfer matrix(
eβε eβεr

qr q

)
.

To find this eigenvalue, set

det

(
eβε − λ eβεr

qr q − λ

)
= 0

λ2 − (q + eβε)λ+ qeβε(1− r2) = 0.

The solution of this quadratic equation is

λ = 1
2

[
(q + eβε)±

√
(q + eβε)2 − 4qeβε(1− r2)

]
= 1

2e
βε

[
1 + qe−βε ±

√
(1− qe−βε)2 + 4qe−βεr2

]
.

In this form, it is clear that the square root is real, so the largest eigenvalue comes from taking the + sign

in the ±:

f(T, ε, r) = −kBT lnλA

= −kBT ln

{
1
2

[
1 + qe−βε +

√
(1− qe−βε)2 + 4qe−βεr2

]}
− ε

= −kBT ln
{

1
2

[
1 + w +

√
(1− w)2 + 4wr2

]}
− ε.

where we have defined

w = qe−βε.

At T = 0, f = −ε and, as expected, F = E − TS −→ Eground state.

e. As r → 0, the free energy becomes

f(T, ε, 0) = −kBT ln
{

1
2

[
1 + w +

√
(1− w)2

]}
− ε

= −kBT ln
{

1
2 [1 + w + |1− w|]

}
− ε.

Note well! For any variable x, √
x2 6= x, instead

√
x2 = |x|.

This function is smooth almost everywhere, but is non-analytic when the argument of the absolute value

vanishes, i.e. when

1− w = 0 or T = Tm ≡
ε

kB ln q
.
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In fact, the free energy behaves as

f(T, ε, 0) =

{
−kBT ln

{
1
2 [(1 + w) + (1− w)]

}
− ε for w < 1, T < Tm

−kBT ln
{

1
2 [(1 + w)− (1− w)]

}
− ε for w > 1, T > Tm

which simplifies to

f(T, ε, 0) =

{
−ε for T < Tm

−kBT ln q for T > Tm

f(T)

T

Tm

ε

Other quantities of interest include the energy,

E(T )

N
=
∂(f/T )

∂(1/T )
=

{
−ε for T < Tm

0 for T > Tm

the entropy,

S(T )

N
= − ∂f

∂T
=

{
0 for T < Tm

kB ln q for T > Tm

and the helical fraction,

θ(T ) = −∂f
∂ε

=

{
1 for T < Tm

0 for T > Tm

The transition at r = 0 is first order: the DNA is either all helical or all melted.

f. If r 6= 0 the free energy is analytic, so all the properties vary smoothly with temperature.

∆T

θ(T)

Tm T
w1

1

0
0
0

r = 0
r > 0
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g. The exact free energy, written in a form to facilitate comparison to r = 0, is

f(T, ε, r) = −kBT ln

{
1
2

[
(1 + w) + |1− w|

{
1 +

4wr2

(1− w)2

}1/2
]}
− ε.

Thus the criterion for “r vanishingly small” is

4wr2

(1− w)2
� 1.

For finite r, this condition fails as w → 1, i.e. near the melting transition. In fact, if ∆w = w − 1, it breaks

down approximately at
4r2

∆w2
≈ 1

or

|∆w| ≈ 2r.

So the “two-sided” ∆T , as defined in the figure above, is

∆T = 2|∆w| dT
dw

∣∣∣∣
w=1

=
4εr

kB ln2 q
.

h.

J(T ) = −N r

kBT

∂f

∂r
= N

4r2w

(1 + w)
√

(1− w)2 + 4r2w + (1− w)2 + 4r2w
.

At T = Tm, we have w = 1 and

J(T ) = N
r

1 + r

The regime r � 1 gives J(T ) ≈ Nr.

In contrast, at T → 0, we have w → 0 and

J(T )→ N
4r2w√

1 + 4r2w + 1 + 4r2w
→ N2wr2.
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