
Exercises on Formalism

Interpretation of amplitude squared as a probability

From the Schwarz inequality:

|〈an|ψ〉| ≤
√
〈an|an〉

√
〈ψ|ψ〉

|〈an|ψ〉|2 ≤ 〈an|an〉〈ψ|ψ〉.

But 〈an|an〉 = 1 by orthonormality, and 〈ψ|ψ〉 = 1 by normalization of states. Fur-

thermore, any complex number has non-negative square modulus, so

0 ≤ |〈an|ψ〉|2 ≤ 1.

[[Grading: 2 points for mentioning “Schwarz inequality”; 6 points for using it; 2 points

for pointing out that “any complex number has non-negative square modulus”.]]

Mean value

|ψ〉 =
∑
n

|an〉〈an|ψ〉

Â|ψ〉 =
∑
m

(Â|am〉)〈am|ψ〉

=
∑
m

am|am〉〈am|ψ〉

So

〈ψ|Â|ψ〉 =

[∑
n

〈ψ|an〉〈an|

][∑
m

am|am〉〈am|ψ〉

]
=

∑
n

∑
m

〈ψ|an〉am〈an|am〉〈am|ψ〉

=
∑
n

∑
m

〈ψ|an〉amδn,m〈am|ψ〉

=
∑
n

〈ψ|an〉an〈an|ψ〉

=
∑
n

an|〈an|ψ〉|2

= 〈Â〉.
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Measurement example

Eigenbases {|an〉} and {|bn〉} are related through

|b1〉 = 4
5 |a1〉+ 3

5 |a2〉

|b2〉 = − 3
5 |a1〉+ 4

5 |a2〉

a. Show that if {|an〉} is orthonormal then {|bn〉} is too.

〈b1|b1〉 =
〈[

4
5 〈a1|+

3
5 〈a2|

]
|
[
4
5 |a1〉+ 3

5 |a2〉
]〉

=
(
4
5

)2 〈a1|a1〉+ 4
5 ·

3
5 〈a1|a2〉+ 3

5 ·
4
5 〈a2|a1〉+

(
3
5

)2 〈a2|a2〉
=

(
4
5

)2
+
(
3
5

)2
= 1

〈b1|b2〉 =
〈[

4
5 〈a1|+

3
5 〈a2|

]
|
[
− 3

5 |a1〉+ 4
5 |a2〉

]〉
= − 4

5 ·
3
5 〈a1|a1〉+

(
4
5

)2 〈a1|a2〉 − ( 35)2 〈a2|a1〉+ 3
5 ·

4
5 〈a2|a2〉

= − 4
5 ·

3
5 + 3

5 ·
4
5 = 0

〈b2|b2〉 =
〈[
− 3

5 〈a1|+
4
5 〈a2|

]
|
[
− 3

5 |a1〉+ 4
5 |a2〉

]〉
=

(
− 3

5

)2 〈a1|a1〉 − 3
5 ·

4
5 〈a1|a2〉 −

4
5 ·

3
5 〈a2|a1〉+

(
4
5

)2 〈a2|a2〉
=

(
3
5

)2
+
(
4
5

)2
= 1.

b. Find {|an〉} in terms of {|bn〉}.

Straightforward linear algebra gives

|a1〉 = 4
5 |b1〉 −

3
5 |b2〉

|a2〉 = 3
5 |b1〉+ 4

5 |b2〉

c. Repeated measurements. Â is measured, giving a1. The system is now in state

|a1〉 = 4
5 |b1〉 −

3
5 |b2〉. Then B̂ is measured.

Possibility I: Measurement of B̂ results in b1. This happens with probability
(
4
5

)2
,

and the system is now in state |b1〉 = 4
5 |a1〉 + 3

5 |a2〉. So when Â is measured again,

the result is a1 with probability
(
4
5

)2
, the result is a2 with probability

(
3
5

)2
.

Possibility II: Measurement of B̂ results in b2. This happens with probability(
− 3

5

)2
, and the system is now in state |b2〉 = − 3

5 |a1〉+
4
5 |a2〉. So when Â is measured

again, the result is a1 with probability
(
− 3

5

)2
, the result is a2 with probability

(
4
5

)2
.

probability of measuring a1 through possibility I =
(
4
5

)2 ( 4
5

)2
= 256

625

probability of measuring a1 through possibility II =
(
− 3

5

)2 (− 3
5

)2
= 81

625

total probability of measuring a1 = 337
625
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probability of measuring a2 through possibility I =
(
4
5

)2 ( 3
5

)2
= 144

625

probability of measuring a2 through possibility II =
(
− 3

5

)2 ( 4
5

)2
= 144

625

total probability of measuring a2 = 288
625

The answers do indeed sum to 1. This is not proof that they’re correct, but if

they had summed to something other than 1, that would have been proof that they

weren’t correct!

Example of generalized indeterminancy relation

For this case ∆µ̂z = 0 and ∆µ̂x = µB/
√

2.

Meanwhile, in the {|z+〉, |z−〉} basis (see textbook, equation (3.13)),

|z+〉 .=

(
1

0

)
; µ̂z

.
= µB

(
1 0

0 −1

)
; µ̂x

.
= µB

(
0 1

1 0

)
.

So in this basis

[µ̂z, µ̂x]
.
= µ2

B

(
1 0

0 −1

)(
0 1

1 0

)
− µ2

B

(
0 1

1 0

)(
1 0

0 −1

)

= µ2
B

(
0 1

−1 0

)
− µ2

B

(
0 −1

1 0

)

= 2µ2
B

(
0 1

−1 0

)
,

whence

〈z + |[µ̂z, µ̂x]|z+〉 = 2µ2
B

(
1 0

)( 0 1

−1 0

)(
1

0

)

= 2µ2
B

(
1 0

)( 0

−1

)
= 0.

So both sides of the generalized indeterminancy relation are zero, and sure enough

0 ≤ 0.
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