Quantum Mechanics 2023

Model Solutions for First Exam

1. Two analyzer loops

paths	input	path taken	intermediate	path taken	output	probability of
blocked	state	through # 1	state	through $\#$ 2	state	$input \rightarrow output$
none	$ z-\rangle$	"both"	$ z-\rangle$	b	$ z-\rangle$	100%
2a	$ z-\rangle$	"both"	$ z-\rangle$	b	$ z-\rangle$	100%
2b	$ z-\rangle$	"both"	$ z-\rangle$	100% blocked at b	none	0%
1a	$ z-\rangle$	50% blocked at ${\tt a}$	$ x-\rangle$	"both"	$ x-\rangle$	50%
		50% pass through b				
1b	$ z-\rangle$	50% pass through a	$ x+\rangle$	"both"	$ x+\rangle$	50%
		50% blocked at ${\sf b}$				
1b and 2a	$ z-\rangle$	50% pass through a	$ x+\rangle$	25% blocked at ${\tt a}$	$ z-\rangle$	25%
		50% blocked at ${\sf b}$		25% pass through b		
1a and 2b	$ z-\rangle$	50% blocked at ${\tt a}$	$ x-\rangle$	25% pass through a	$ z+\rangle$	25%
		50% pass through b		25% blocked at ${\sf b}$		

2. Orthonormality

Bases $\{|a_n\rangle\}$ and $\{|b_n\rangle\}$ are related through

$$|b_1\rangle = \cos\phi |a_1\rangle + \sin\phi |a_2\rangle$$

 $|b_2\rangle = -\sin\phi |a_1\rangle + \cos\phi |a_2\rangle,$

Show that if $\{|a_n\rangle\}$ is orthonormal then $\{|b_n\rangle\}$ is too.

$$\langle b_{1}|b_{1}\rangle = \left\langle \left[\cos\phi \left\langle a_{1}|+\sin\phi \left\langle a_{2}|\right]\right] \left[\cos\phi \left|a_{1}\right\rangle + \sin\phi \left|a_{2}\right\rangle\right] \right\rangle$$

$$= \left(\cos\phi\right)^{2} \left\langle a_{1}|a_{1}\right\rangle + \cos\phi \cdot \sin\phi \left\langle a_{1}|a_{2}\right\rangle + \sin\phi \cdot \cos\phi \left\langle a_{2}|a_{1}\right\rangle + \left(\sin\phi\right)^{2} \left\langle a_{2}|a_{2}\right\rangle$$

$$= \left(\cos\phi\right)^{2} + \left(\sin\phi\right)^{2} = 1$$

$$\langle b_{1}|b_{2}\rangle = \left\langle \left[\cos\phi \left\langle a_{1}|+\sin\phi \left\langle a_{2}\right|\right]\right] \left[-\sin\phi \left|a_{1}\right\rangle + \cos\phi \left|a_{2}\right\rangle\right] \right\rangle$$

$$= -\cos\phi \cdot \sin\phi \left\langle a_{1}|a_{1}\right\rangle + \left(\cos\phi\right)^{2} \left\langle a_{1}|a_{2}\right\rangle - \left(\sin\phi\right)^{2} \left\langle a_{2}|a_{1}\right\rangle + \sin\phi \cdot \cos\phi \left\langle a_{2}|a_{2}\right\rangle$$

$$= -\cos\phi \cdot \sin\phi + \sin\phi \cdot \cos\phi = 0$$

$$\langle b_{2}|b_{2}\rangle = \left\langle \left[-\sin\phi \left\langle a_{1}|+\cos\phi \left\langle a_{2}|\right]\right] \left[-\sin\phi \left|a_{1}\right\rangle + \cos\phi \left|a_{2}\right\rangle\right] \right\rangle$$

$$= \left(\sin\phi\right)^{2} \left\langle a_{1}|a_{1}\right\rangle - \sin\phi \cdot \cos\phi \left\langle a_{1}|a_{2}\right\rangle - \cos\phi \cdot \sin\phi \left\langle a_{2}|a_{1}\right\rangle + \left(\cos\phi\right)^{2} \left\langle a_{2}|a_{2}\right\rangle$$

$$= \left(\sin\phi\right)^{2} + \left(\cos\phi\right)^{2} = 1.$$

3. Change of basis

a. The set $\{|1'\rangle, |2'\rangle\}$ spans because $\{|1\rangle, |2\rangle\}$ spans and $|1\rangle = |1'\rangle; |2\rangle = e^{i\phi}|2'\rangle$. $|1'\rangle$ and $|2'\rangle$ are orthogonal because $\langle 1'|2'\rangle = e^{-i\phi}\langle 1|2\rangle = 0$. Each element is normalized because $\langle 1'|1'\rangle = \langle 1|1\rangle = 1; \langle 2'|2'\rangle = e^{-i\phi}\langle 2'|2\rangle = e^{-i\phi}e^{i\phi}\langle 2|2\rangle = 1$.

b. The desired matrix is

$$\left(\begin{array}{cc} \langle 1'|\hat{H}|1'\rangle & \langle 1'|\hat{H}|2'\rangle \\ \langle 2'|\hat{H}|1'\rangle & \langle 2'|\hat{H}|2'\rangle \end{array}\right).$$

But

$$\langle 1'|\hat{H}|1'\rangle = \langle 1|\hat{H}|1\rangle = a$$

$$\langle 1'|\hat{H}|2'\rangle = e^{-i\phi}\langle 1|\hat{H}|2\rangle = e^{-i\phi}(ce^{i\phi}) = c$$

$$\langle 2'|\hat{H}|1'\rangle = e^{i\phi}\langle 2|\hat{H}|1\rangle = e^{i\phi}(ce^{-i\phi}) = c$$

$$\langle 2'|\hat{H}|2'\rangle = e^{i\phi}e^{-i\phi}\langle 2|\hat{H}|2\rangle = b$$

so the desired matrix is

$$\left(\begin{array}{cc}a&c\\c&b\end{array}\right).$$

4. Matrix algebra

a. From the problem assignment, the matrix is

$$\begin{pmatrix} z_0 + z_3 & z_1 - iz_2 \\ z_1 + iz_2 & z_0 - z_3 \end{pmatrix}.$$

If this matrix is to represent a Hamiltonian, the diagonal elements must be real. That is,

$$\Im m\{z_0 + z_3\} = \Im m\{z_0 - z_3\} = 0$$

or

$$\Im m\{z_0\} + \Im m\{z_3\} = 0$$
 while $\Im m\{z_0\} - \Im m\{z_3\} = 0$.

Solving these two equations simultaneously gives

$$\Im m\{z_0\} = 0$$
 and $\Im m\{z_3\} = 0$,

that is z_0 and z_3 must be pure real.

In addition, if this matrix is to represent a Hamiltonian, the subdiagonal is the complex conjugate of the superdiagonal:

$$z_1 + iz_2 = (z_1 - iz_2)^* = z_1^* + iz_2^*$$

whence

$$z_1 - z_1^* = i(z_2^* - z_2)$$
 or $2i\Im m\{z_1\} = i(-2i\Im m\{z_2\}).$

In this equation, the left-hand side is pure imaginary, while the right-hand side is pure real. Hence both sides must vanish,

$$\Im m\{z_1\} = \Im m\{z_2\} = 0,$$

that is z_1 and z_2 must be pure real.

b. Problem 3(b) shows that with a suitable choice of basis, the off-diagonal element of a 2×2 Hamiltonian can always be made real. Using this choice we will thus have $z_2 = 0$.