Continuous Systems
Convention: In these solutions, all the integrals run from —oo to 4oc.
The states {|p)} constitute a continuous basis

a. If

A= [ il
then, for arbitrary states |¢) and |v),
@A) = [ (o)l do
- / dp (6|19} (p[110)

= [ao [ [ @’ 6l)talp) ol o)
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= |C\2/dx /dx’ ¢* (2)Y (") :h/dkeik(le)}

- P / da / da' ¢* (x)(a") :mﬂ(s(z_x')}

- 27rh|C|2/dac/dx’(/)*(a:)w(x’)é(x—:c’)

= 27rh|0|2/da:¢*(x)w(x)
= 27h|C[*(g]v).

Because |¢) and |¢)) are arbitrary, we conclude that
A = 2nh|C1.

The choice C = 1/v27h makes
A= [In)ldp=1.



W) = / dz (pl) (o)
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\C|2/dazei(‘”/h)(”/*”) [...useu=2a/h...]

= \C|2h/duew(p/_”)

= 270|CPo(p —p').
The choice C = 1/v/27h is again convenient leading to
{plp") =d(p—p).

[Grading: 5 points for part a, 5 points for part b.]

Peculiarities of continuous basis states

Set
X(z) = (2fa) = 6(x — 2)
so that
/X*(I)X(I) dx = /5(x —2)d(x — 2')dx = §(0) =
Set
7(2) = {elp) = ——e0/"
so that

[Grading: 5 points for each oo.]



Hermiticity of the momentum operator

(olpl)
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= —ih {/_Oo o*(z )dw( ?) x} [...integrate by parts ...]
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. Foo [ d¢™ (x) o :
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Thus p is Hermitian as long is it operates on states whose wavefunctions vanish at +oo.

[Grading: 5 points for realizing you need to use integration by parts, 5 points for using it correctly.]



Commutator of z and p

Define |¢1) = Z|v) so that

(zpzly) = (x|pler)

L 0
= Zh%v<x|¢1>
= —ihaax(@mw))
= —ih%(mw(x))
= —itw(z) — ik &gf)
Meanwhile, define |¢9) = p|v) so that
(zlzply) = (z]2|d2)
= z(z|p2)
= x(z|pl)
_ L 0Y(x)
= m(—zﬁ o )
Hence
(x|[#, pl]) = fihxazgix) +itp(x) +ihxazg7§j) — in{z|v).

Now consider the commutator operator between two arbitary states

X|[2, pllv) /dw (X|z) (2| [2, pl|¢)

in / de (X))
i (X)),

Because |X) and |¢)) are arbitary,
[Z,p] = ihi.

The usual convention is that the identity operator 1 is understood, so this is written as

[Z,p] = ih.

[Grading: There are many ways to do this problem. All correct ways, even if inelegant, earn 10 points.]



Momentum representation of the Schrédinger equation

(plH() = ()| Hlp)
= (@®)[@*/2m)lp)" + WOV |p)
= (*/2m)(W(b)p)" + WOV p)
= @2mmwm+@mMm
= D)+ (VI (),
b.
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c. The function V() has the dimensions [energy|, but the function V(p) has the dimensions

[length]
[momentum)]

[time]

[energy] = [energy]

[mass]’

Proof in the“Fourier transform style”:

1
V2mh

1 . 1 . /
— d ez(p/h):n /dl’l efz(p/h)a: Viz
\/271'71/ P V2rh (=)

[Note use of ', not z, as dummy integration variable!]

1 dp /
= 5 / dx' V(a2') / %p e!p/M)(z=a’) [Use analytic form of Dirac delta function. ..
™

dp e P/MT () [Use definition (6.17a) ...]

= /dx'V(x’)é(x—x')
= V(z).

Proof in the “bra-ket style”:
/dp (zp)V (p) [Use definition (6.17b) ...]

::/@@m/wmwww



[Note use of 2’, not z, as dummy integration variable!]]

= /dx’ (x| /dp Ip)(p| |2")V (z) [Recognize the complete basis states. . . ]
= /dx’ (z|1)2")V () [Recognize the orthogonal states. .. ]

_ /dx’ (@l)V (') = /dw’é(acfz’)V(x’)

= V().
d. Recall that
pIVIp(t) = \/;?h dz =PIV () ()
V(z) = \/21?7‘1 / dpl" P I 7 (37

Blot) = (alw(t) = / dp’<x|p’><p’|w<t>>:¢% / dp’ P IV (s 1)
SO

Vo) = o [do [y [ e om0 et me s

= = / ! i/dl i(z/R) (0 +0" =P) | V7 (! \oTy( 1! -
- 27rh/dp /dp |:27r n ¢ V(p")u(';t)

= = [ [ o+ )] V60

e. Drawing all the pieces together,

a&(p; t) _ P’ 5 . 1 ® 5 / .
it + o [ V- )i

ot h
One interesting point is that the Schrodinger equation is local in position space (the time rate of change
of ¢(x;t) at point xo depends only upon the value and curvature of 1 (x;t) at that point) whereas the
Schrodinger equation is non-local in momentum space (the time rate of change of z/;(p; t) at momentum pg

depends upon the values of z/?(p; t) at all momenta from —oo to +00.)

[Grading: This is a long and intricate problem, with a rich payoff. Students earn 2 points for each of the

five parts.]



