
Thomson’s dipole

Griffiths, Electrodynamics, fourth edition, problem 8.19
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At the point in question:

Electric field is
~E =

1

4πε0

qe
r2
r̂.

Magnetic field is
~B =

µ0

4π

qm
r2m

r̂m.

Momentum density is

~gem = ε0 ~E × ~B

so it points into page with magnitude

|~gem| =
µ0

(4π)2
qeqm
r2r2m

sin γ.

Angular momentum density (origin at the electric charge) is

~r × ~gem

but, by symmetry, the horizontal components of angular momentum will integrate to zero. Thus we want

only the vertical component of angular momentum density at the point in question. This component is

µ0

(4π)2
qeqm
rr2m

sin γ sin θ.
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[[I think of the momentum as running around the axis in hoops — like hula hoops — centered on and

perpendicular to the axis. Of course the angular momentum of each hoop is in the direction of ~d. For no

particular reason, I picture the momentum as yellow, and the hoops are like halos. So in my visualization

the situation is somewhat angelic.]]

First, we need to express rm and γ in terms of d, r, and θ. According to the law of sines,

rm
sin θ

=
d

sin γ

so

sin γ =
d

rm
sin θ.

Meanwhile, according to the law of cosines,

r2m = r2 + d2 − 2rd cos θ.

Thus the vertical component of the angular momentum density at the point in question is

µ0

(4π)2
qeqm
rr3m

d sin2 θ =
µ0

(4π)2
qeqm

r[r2 + d2 − 2rd cos θ]3/2
d sin2 θ.

Second, to find the total angular momentum, we need to integrate this density over all space. We use

spherical coordinates. The direction of angular momentum is clearly from the electric charge toward the

magnetic charge, so we need only find the magnitude

L =

∫ 2π

0

dφ

∫ π

0

sin θ dθ

∫ ∞
0

r2 dr
µ0

(4π)2
qeqm

r[r2 + d2 − 2rd cos θ]3/2
d sin2 θ

=
µ0

(4π)2
qeqm 2π

∫ π

0

sin θ dθ

∫ ∞
0

r2 dr
1

r[r2 + d2 − 2rd cos θ]3/2
d sin2 θ

=
µ0

8π
qeqm

∫ π

0

sin3 θ dθ

∫ ∞
0

dr
rd

[r2 + d2 − 2rd cos θ]3/2
.

Change the integration variable from r to the dimensionless quantity u = r/d.

L =
µ0qeqm

8π

∫ π

0

sin3 θ dθ

∫ ∞
0

du
ud3

[d2u2 + d2 − 2d2u cos θ]3/2

=
µ0qeqm

8π

∫ π

0

sin3 θ dθ

∫ ∞
0

du
u

[u2 + 1− 2u cos θ]3/2
.

This result is clearly independent of the magnitude d!

The radial integral is Dwight 380.013 giving

L =
µ0qeqm

8π

∫ π

0

sin3 θ dθ

[
− 2(−2 cos θ)u+ 4

(4− 4 cos2 θ)[u2 + 1− 2u cos θ]1/2

]∞
0

=
µ0qeqm

8π

∫ π

0

sin3 θ dθ

[
u cos θ − 1

sin2 θ[u2 + 1− 2u cos θ]1/2

]∞
0

=
µ0qeqm

8π

∫ π

0

sin θ dθ [cos θ + 1]
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=
µ0qeqm

8π

[∫ π

0

sin θ cos θ dθ +

∫ π

0

sin θ dθ

]
=

µ0qeqm
8π

[
0− [cos θ]π0

]
=

µ0qeqm
4π

.

Appended question: Can you produce any sort of qualitative argument to understand why this angular

momentum should be independent of d?

One approach is a very qualitative one: There is significant field angular momentum in the region where

there is both significant ~E and significant ~B. As the two monopoles draw apart, this region becomes larger

but the fields become weaker

A second approach uses dimensional analysis.

quantity dimensions (MKS)

ε0 C2/N m2 = m−3 · kg−1 · s2 · C2

µ0 N/A2 = m · kg · C−2

qe C

qm C m/s = m · s−1 · C
d m

L kg m2/s = m2 · kg · s−1

To make

L = (dimensionless constant)εα0µ
β
0 q
γ
e q
δ
md

ε

we must have

balancing m: 2 = −3α+ β + δ + ε

balancing kg: 1 = −α+ β

balancing s: −1 = 2α− δ
balancing C: 0 = 2α− 2β + γ + δ

There are four equations in five unknowns. The solutions are

α = anything

β = 1 + α

γ = 1− 2α

δ = 1 + 2α

ε = 0

We know from above that the true solution happens to have α = 0. But even without knowing this, the

fact that ε = 0 for any value of α means that the total angular momentum has to be independent of the

separation d.
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But my favorite approach is the one devised by David Lesser (class of 2010). He pointed out that the

electric and magnetic monopoles exert no force on each other. Thus the two can be moved toward each

other, or apart from each other, without the exertion of a force — or a torque. Moving them apart will thus

require no torque and hence result in no change of angular momentum.

This argument is enticing, but I don’t understand this aspect: “Similarly changing the orientation of the

dipole will also require no force. Yet this change does alter the angular momentum!” So I’m not sure how

all of this works out.

Appendix: Alternate Derivation

Gabe Salmon (class of 2018) suggested a different approach which is oriented more toward Cartesian

coordinates. It has a number of strong points but neither Gabe nor I have been able to push it all the way

through to a solution.

Set up coordinates with the electric charge at the origin, the magnetic charge at ~d = dẑ.

To begin with: By symmetry, the total angular momentum ~L must be along the axis between the two

monopoles: ~L = +|~L|ẑ or ~L = −|~L|ẑ. (This step is not absolutely necessary, but it’s nice.)

The total angular momentum is

~L =

∫
all space

~r × ~gem d3r

but

~r × ~gem = ε0~r × ( ~E × ~B)

= ε0~r ×

([
1

4πε0

qe
|~r|3

~r

]
×

[
µ0

4π

qm

|~r − ~d|3
(~r − ~d)

])
=

µ0

(4π)2
qeqm

|~r|3|~r − ~d|3
~r × (~r × (~r − ~d))

= − µ0

(4π)2
qeqm

|~r|3|~r − ~d|3
~r × (~r × ~d)

so

~L = − µ0

(4π)2
qeqm

∫
~r × (~r × ~d)

|~r|3|~r − ~d|3
d3r.

Switching to dimensionless scaled variables

~̃r =
~r

|~d|
and ẑ =

~d

|~d|
gives

~L = − µ0

(4π)2
qeqm

∫
d3 ~̃r × (~̃r × ẑ)
d6 |~̃r|3|~̃r − ẑ|3

(d3) d3r̃ = − µ0

(4π)2
qeqm

∫ ~̃r × (~̃r × ẑ)
|~̃r|3|~̃r − ẑ|3

d3r̃.

At this point, we know that ~L is independent of the separation magnitude d.

From now on, we will use only scaled variables so I will drop the tildes and write

~L = − µ0

(4π)2
qeqm

∫
~r × (~r × ẑ)
|~r|3|~r − ẑ|3

d3r.
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From the well-known “bac cab” vector identity,

~r × (~r × ẑ) = ~r (~r · ẑ)− ẑ (~r · ~r) = ~r z − ẑ r2.

Look at the contribution from the ~r z part:∫
~r z

|~r|3|~r − ẑ|3
d3r =

∫
(xz, yz, z2)

[x2 + y2 + z2]3/2[x2 + y2 + (z − 1)2]3/2
d3r.

Because the integrand is odd, ∫ +∞

−∞

x

[x2 +A2]3/2[x2 +B2]3/2
dx = 0,

and similarly for y, whence ∫
~r z

|~r|3|~r − ẑ|3
d3r = ẑ

∫
z2

|~r|3|~r − ẑ|3
d3r.

Pulling these strands together

~L = − µ0

(4π)2
qeqm

[
ẑ

∫
z2

|~r|3|~r − ẑ|3
d3r − ẑ

∫
r2

|~r|3|~r − ẑ|3
d3r

]
=

µ0

(4π)2
qeqmẑ

[∫
x2 + y2

|~r|3|~r − ẑ|3
d3r

]
.

The integral in square brackets is clearly a dimensionless positive number, so the angular momentum points

from the electric monopole toward the magnetic monopole. This expression confirms the symmetry argument

that we started with, gives us the direction of the angular momentum, its dependence on µ0, qe, and qm,

and its independence of d. All that remains is to find the dimensionless positive number∫
x2 + y2

|~r|3|~r − ẑ|3
d3r =

∫
x2 + y2

[x2 + y2 + z2]3/2[x2 + y2 + (z − 1)2]3/2
d3r

=

∫ +∞

−∞
dz

∫ ∞
0

2πs ds
s2

[s2 + z2]3/2[s2 + (z − 1)2]3/2

= π

∫ +∞

−∞
dz

∫ ∞
0

du
u

{[u+ z2][u+ (z − 1)2]}3/2
,

but I haven’t been able to evaluate this two-dimensional integral. Can you?
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