Conclusions concerning RC circuit

In all cases:

$$v_R(t) = RC \frac{dv_C(t)}{dt}$$

Sinusoidal driving:

$$v_T(t) = \mathcal{E}_m \sin \omega t \quad \omega = 2\pi f$$

Slow changes: $\left(\text{low frequencies; } f \ll \frac{1}{2RC} \right)$

- Voltage is mostly across capacitor $(v_C(t) \approx v_T(t); v_R(t) \ll v_T(t))$
- $v_C(t)$ (\propto charge) lags $v_T(t)$ by a bit
- $v_R(t)$ (\propto current) leads $v_T(t)$ by about $\frac{1}{4}$ period
- Differentiation circuit: $v_R(t) \approx RC \frac{dv_T(t)}{dt}$ [holds for any slowly varying $v_T(t)$]

Fast changes: (high frequencies; $f \gg \frac{1}{2RC}$)

- Voltage is mostly across resistor $(v_R(t) \approx v_T(t); v_C(t) \ll v_T(t))$
- $v_C(t) \ (\propto \text{ charge}) \ \text{lags} \ v_T(t) \ \text{by about} \ \frac{1}{4} \ \text{period}$
- $v_R(t)$ (\propto current) leads $v_T(t)$ by a bit
- Integration circuit: $v_T(t) \approx RC \frac{dv_C(t)}{dt} \Longrightarrow v_C(t) \approx \frac{1}{RC} \int v_T(t) dt$ [holds for any rapidly varying $v_T(t)$]

At all frequencies, $v_R(t)$ leads $v_C(t)$ by exactly $\frac{1}{4}$ period