Conclusions concerning RC circuit

In all cases:

$$
v_{R}(t)=R C \frac{d v_{C}(t)}{d t}
$$

Sinusoidal driving:

$$
v_{T}(t)=\mathcal{E}_{m} \sin \omega t \quad \omega=2 \pi f
$$

Slow changes: (low frequencies; $f \ll \frac{1}{2 R C}$)

- Voltage is mostly across capacitor $\left(v_{C}(t) \approx v_{T}(t) ; \quad v_{R}(t) \ll v_{T}(t)\right)$
- $v_{C}(t)\left(\propto\right.$ charge) lags $v_{T}(t)$ by a bit
- $v_{R}(t)\left(\propto\right.$ current) leads $v_{T}(t)$ by about $\frac{1}{4}$ period
- Differentiation circuit: $v_{R}(t) \approx R C \frac{d v_{T}(t)}{d t}$
[holds for any slowly varying $v_{T}(t)$]

Fast changes: (high frequencies; $f \gg \frac{1}{2 R C}$)

- Voltage is mostly across resistor $\left(v_{R}(t) \approx v_{T}(t) ; \quad v_{C}(t) \ll v_{T}(t)\right)$
- $v_{C}(t)\left(\propto\right.$ charge) lags $v_{T}(t)$ by about $\frac{1}{4}$ period
- $v_{R}(t)$ (\propto current) leads $v_{T}(t)$ by a bit
- Integration circuit: $v_{T}(t) \approx R C \frac{d v_{C}(t)}{d t} \Longrightarrow v_{C}(t) \approx \frac{1}{R C} \int v_{T}(t) d t$ [holds for any rapidly varying $v_{T}(t)$]

At all frequencies, $v_{R}(t)$ leads $v_{C}(t)$ by exactly $\frac{1}{4}$ period

