## Electric Potential Energy

Find the electric potential energy of three charges, $q_{1}, q_{2}$, and $g_{3}$, separated by the distances $r_{12}, r_{13}$, and $r_{23}$. (Note: if there were four charges, there would be six distances, if there were $N$ charges there would be $N(N-1) / 2$ distances.)

Initial configuration: The three charges all all far away from each other. By definition, the electric potential energy is $U^{(e)}=0$.

Stage $I$ : Move $q_{1}$ to its final position:

$$
\begin{aligned}
\Delta U^{(e)} & =-\int \vec{F}_{\mathrm{on} 1}^{(e)} \cdot d \vec{\ell}_{1} \\
& =0 .
\end{aligned}
$$

So

$$
\begin{aligned}
U_{\text {at end of stage I }}^{(e)} & =U_{\text {at start of stage I }}^{(e)}+\Delta U^{(e)} \\
& =0
\end{aligned}
$$

Stage $I I$ : Move $q_{2}$ to its final position:

$$
\begin{aligned}
\Delta U^{(e)} & =-\int \vec{F}_{\text {on } 2}^{(e)} \cdot d \vec{\ell}_{2} \quad \llbracket \ldots \text { place origin on top of } q_{1} \ldots \rrbracket \\
& =-\int \frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{2}^{2}} \hat{r}_{2} \cdot d \vec{\ell}_{2} \\
& =+\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}
\end{aligned}
$$

So

$$
\begin{aligned}
U_{\text {at end of stage II }}^{(e)} & =U_{\text {at start of stage II }}^{(e)}+\Delta U^{(e)} \\
& =\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}
\end{aligned}
$$

Stage III: Move $q_{3}$ to its final position:

$$
\begin{aligned}
\Delta U^{(e)} & =-\int \vec{F}_{\text {on } 3}^{(e)} \cdot d \vec{\ell}_{3} \\
& =-\int \vec{F}_{\text {on } 3 \text { by } 1}^{(e)} \cdot d \vec{\ell}_{3}-\int \vec{F}_{\text {on } 3 \text { by } 2}^{(e)} \cdot d \vec{\ell}_{3} \\
& =+\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{3}}{r_{13}}+\frac{1}{4 \pi \epsilon_{0}} \frac{q_{2} q_{3}}{r_{23}}
\end{aligned}
$$

So

$$
\begin{aligned}
U_{\text {at end of stage III }}^{(e)} & =U_{\text {at start of stage III }}^{(e)}+\Delta U^{(e)} \\
& =\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right]
\end{aligned}
$$

