True love

The ring in water is buoyed up by the weight of the displaced fluid. The weights in air and in water are

$$
W_{a}=\rho_{m} V g \quad \text { and } \quad W_{w}=\left(\rho_{m}-\rho_{w}\right) V g
$$

so

$$
\frac{W_{w}}{W_{a}}=\frac{\rho_{m}-\rho_{w}}{\rho_{m}}=1-\frac{\rho_{w}}{\rho_{m}}
$$

Thus

$$
\rho_{m}=\frac{\rho_{w}}{1-W_{w} / W_{a}}=20.5 \mathrm{~g} / \mathrm{cm}^{3}
$$

Looks like platinum. (Note that there's no need to convert from carats to any more conventional unit of force. Only the dimensionless ratio enters into the problem.)

Grading: There are many ways to solve this problem. Any of them earn full credit.

