Open the stopcock

$$
\begin{array}{rcr}
\text { initial values: } & p_{A}, V_{A}, T_{A} & p_{B}, V_{B}, T_{B} \\
\text { initial mole numbers: } & n_{A}=\frac{p_{A} V_{A}}{R T_{A}} & n_{B}=\frac{p_{B} V_{B}}{R T_{B}} \\
\text { final values: } & p, V_{A}, T_{A} & p, V_{B}, T_{B} \\
\text { final mole numbers: } & n_{A, f}=\frac{p V_{A}}{R T_{A}} & n_{B, f}=\frac{p V_{B}}{R T_{B}}
\end{array}
$$

Particle number (and mole number) is conserved during this process, so

$$
\begin{align*}
n_{A}+n_{B} & =n_{A, f}+n_{B, f} \tag{1}\\
\frac{p_{A} V_{A}}{R T_{A}}+\frac{p_{B} V_{B}}{R T_{B}} & =\frac{p V_{A}}{R T_{A}}+\frac{p V_{B}}{R T_{B}} \tag{2}\\
\frac{p_{A} V_{A}}{T_{A}}+\frac{p_{B} V_{B}}{T_{B}} & =p\left(\frac{V_{A}}{T_{A}}+\frac{V_{B}}{T_{B}}\right) \tag{3}\\
p_{A} V_{A} T_{B}+p_{B} V_{B} T_{A} & =p\left(V_{A} T_{B}+V_{B} T_{A}\right) \tag{4}\\
\frac{p_{A} V_{A} T_{B}+p_{B} V_{B} T_{A}}{V_{A} T_{B}+V_{B} T_{A}} & =p \tag{5}
\end{align*}
$$

Plugging in the numbers supplied (including $V_{B}=3.3 V_{A}$) gives

$$
\begin{equation*}
p=\frac{p_{A} V_{A} T_{B}+p_{B}\left(3.3 V_{A}\right) T_{A}}{V_{A} T_{B}+\left(3.3 V_{A}\right) T_{A}}=\frac{p_{A} T_{B}+3.3 p_{B} T_{A}}{T_{B}+3.3 T_{A}}=2.1 \times 10^{5} \mathrm{~Pa} . \tag{6}
\end{equation*}
$$

Note that if you found algebraic expressions for $n_{A, f}$ or $n_{B, f}$ in terms of initial quantities, or if you calculated numerical values for the initial mole numbers n_{A} and n_{B}, you were doing way too much work. (And here I mean work in the sense of intellectual activity and effort, not in the sense of thermodynamics.)

Grading: 2 points for setup, such as defining quantities;
2 points for realizing (equation 1) that conservation of particle number is the key;
2 points for setting up equation (2);
2 points for reaching solution (5);
2 points for finding the number (6).

