Oberlin College Physics 111, Spring 2024

Model Solutions to Second Exam

1. Teakettle. The rate of water evaporation is proportional to the power dissipated at the resistive element, namely $i^{2} R$. If i increases by a factor of 1.21 , then power dissipation increases by a factor of $(1.21)^{2}=1.46$ (three significant figures), so the rate of water evaporation increases to (two significant figures)

$$
1.46 \times(0.41 \mathrm{cup} / \mathrm{min})=0.60 \mathrm{cup} / \mathrm{min}
$$

【Grading: 2 points for "rate proportional to power"; 2 points for $i^{2} R ; 2$ points for number; 2 points for two significant figures; 2 points for "cup/min" (either explicit or in text).]
2. Network circuit. Call the current up through the left battery i_{L} (this is our desired quantity), the current up through the right battery i_{R}. The loop rule applied to the left loop gives

$$
13 \mathrm{~V}-i_{L}(15 \Omega)-\left(i_{R}+i_{L}\right)(22 \Omega)=0
$$

while the loop rule applied to the right loop gives

$$
25 \mathrm{~V}-i_{R}(11 \Omega)-\left(i_{R}+i_{L}\right)(22 \Omega)=0
$$

So we need to solve simultaneously

$$
\begin{aligned}
& 13 \mathrm{~V}-i_{L}(37 \Omega)-i_{R}(22 \Omega)=0 \\
& 25 \mathrm{~V}-i_{L}(22 \Omega)-i_{R}(33 \Omega)=0
\end{aligned}
$$

To eliminate i_{R} multiply the top equation by 3 , and the bottom equation by -2 , then sum:

$$
(3 \times 13-2 \times 25) \mathrm{V}-i_{L}(3 \times 37-2 \times 22) \Omega=0
$$

giving

$$
i_{L}=\frac{(3 \times 13-2 \times 25)}{(3 \times 37-2 \times 22)} \mathrm{A}=\frac{-11}{67} \mathrm{~A}=-0.16 \mathrm{~A}
$$

Note the negative sign. The 25 V battery is so hefty that it actually forces current down through the 13 V battery.

【Grading: 2 points for starting off; 2 points for left loop equation; 2 points for right loop equation; 4 points for solution.]

3．Force on table wire．Because $\vec{F}=i \vec{L} \times \vec{B}$ ，where \vec{L} is horizontal，the horizontal component of \vec{B} ， parallel to \vec{L} ，does not contribute to the force．The magnitude is $F=i L B_{v}=0.474 \mathrm{mN}$ ，and the direction （through right－hand rule）is horizontal，toward magnetic west（i．e．toward 7.60° south of west）．

【Grading： 2 points for correct equation； 4 points for correct magnitude； 4 points for correct direction．】
4．Switched－on circuit．Immediately after the switch is closed，no current flows through the inductor．
（a）Current through the 10Ω resistor is $(30 \mathrm{~V}) /(30 \Omega)=1 \mathrm{~A}$ ．
（b）So the voltage drop across the 10Ω resistor is 10 V ，whence the emf of the inductor is 10 V ， whence $d i / d t=\mathcal{E} / L=(10 \mathrm{~V}) /(0.2 \mathrm{mH})=50 \mathrm{kA} / \mathrm{s}$ ．

After a long time has passed，changes have stopped happening so the inductor has nothing to fight．It acts like a simple piece of wire．
（c）Current through the 10Ω resistor is zero－it shunts through the simple piece of wire instead． （d）$d i / d t=0-$ everything has settled down and is not changing with time．

【Grading： 3 points each for（a）and（b）； 2 points each for（c）and（d）．】

