Oberlin College Physics 111，Spring 2024

Model Solutions to First Exam

1．The length of a diagonal is $\sqrt{2} a$ ．Half the length of a diagonal is $a / \sqrt{2}$ ．
a．Potential at center is
$V_{\text {due to } \mathrm{A}}+V_{\text {due to } \mathrm{B}}+V_{\text {due to } \mathrm{C}}+V_{\text {due to } \mathrm{D}}=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{-2 q}{a / \sqrt{2}}+\frac{+q}{a / \sqrt{2}}+\frac{+q}{a / \sqrt{2}}+\frac{-3 q}{a / \sqrt{2}}\right]=\frac{1}{4 \pi \epsilon_{0}} \frac{-3 \sqrt{2} q}{a}$.
【Grading：Use of potential formula， 1 point．Correct answer， 2 points．】
b．From Coulomb＇s law，

$$
\left|\vec{F}_{A}\right|=\frac{1}{4 \pi \epsilon_{0}} \frac{(2 q)(3 q)}{(\sqrt{2} a)^{2}}=\frac{1}{4 \pi \epsilon_{0}} \frac{3 q^{2}}{a^{2}} \quad \text { while } \quad\left|\vec{F}_{B}\right|=\left|\vec{F}_{C}\right|=\frac{1}{4 \pi \epsilon_{0}} \frac{3 q^{2}}{a^{2}}
$$

so

$$
\left|\vec{F}_{B}+\vec{F}_{C}\right|=\frac{1}{4 \pi \epsilon_{0}} \frac{3 \sqrt{2} q^{2}}{a^{2}} \quad \text { and } \quad\left|\vec{F}_{A}+\vec{F}_{B}+\vec{F}_{C}\right|=\frac{1}{4 \pi \epsilon_{0}} \frac{3(\sqrt{2}-1) q^{2}}{a^{2}}
$$

«Grading：Use of Coulomb＇s Law， 2 points．Correct magnitude， 3 points．Correct direction， 2 points．】

2．Electrostatics lab

It＇s clear from the figure that equlibrium comes when the electric force has the same magnitude as the gravitational force：

$$
\frac{1}{4 \pi \epsilon_{0}} \frac{q_{L} q_{R}}{(\sqrt{2} L)^{2}}=m g
$$

Solving for the product of charges gives

$$
q_{L} q_{R}=\frac{2 L^{2} m g}{1 / 4 \pi \epsilon_{0}}
$$

Plugging in numbers（remember：two significant digits！，convert to MKS！，state units of the final answer！） gives

$$
q_{L} q_{R}=5.3 \times 10^{-14} \mathrm{C}^{2}
$$

«Grading：Figure， 2 pts．Equation， 2 pts．Number， 2 pts．Two sig．figs．， 2 pts．Units， 2 pts．】

3．Flux through the face of a cube

（1）Electric field is tangent to the top，right，and back faces，so for these faces $\Phi=0$ ．
（2）The bottom，left，and front faces are arranged symmetrically relative to the charge．
（3）So each has the same flux：$\Phi_{\text {total }}=3 \Phi_{\text {front }}$ ．
（4）The charge inside the cube is $Q / 8$ ．
（5）By Gauss＇s law，$\Phi_{\text {total }}=(Q / 8) / \epsilon_{0}$ so $\Phi_{\text {front }}=Q /\left(24 \epsilon_{0}\right)$ ．

【Grading：Each stage earns 2 points．】

4．Square of charge

$$
\begin{equation*}
E(z)=\frac{q}{4 \pi \epsilon_{0}} \frac{z-a}{\left(z^{2}+a^{2} / 4\right)\left(z^{2}+a^{2} / 2\right)^{1 / 2}} \tag{1}
\end{equation*}
$$

A correct result would give $E(0)=0$ ，but this one doesn＇t．
$E(z)=\frac{q}{4 \pi \epsilon_{0}} \frac{z}{\left(z^{2}+a^{2} / 4\right)\left(z^{2}+a^{2} / 2\right)^{1 / 2}}$
This one＇s correct．
$E(z)=\frac{q}{4 \pi \epsilon_{0}} \frac{z}{\left(z^{2}-a^{2} / 4\right)\left(z^{2}+a^{2} / 2\right)^{1 / 2}}$
Blows up at $z=a / 2$ ．No way！
$E(z)=\frac{q}{4 \pi \epsilon_{0}} \frac{z}{\left(z^{2}+a^{2} / 4\right)\left(z^{2}+a / 2\right)^{1 / 2}}$
Dimensionally incorrect：expression in bottom right would give［length $]^{2}+[$ length $]$ ．
$E(z)=\frac{q}{4 \pi \epsilon_{0}} \frac{z}{\left(z^{2}+a^{2} / 4\right)\left(2 z^{2}+a^{2} / 2\right)^{1 / 2}}$
A correct result must give E for a point charge when $a=0$ ．This candidate doesn＇t．
【Grading：Each analysis earns 2 points．】

