Change in a cycle (or "There and back again")
(a) Isothermal change: $p_{1} V_{1}=p_{2} V_{2}=n R T_{1}$ so

$$
\frac{p_{2}}{p_{1}}=\frac{V_{1}}{V_{2}}=\frac{1}{3.00}=0.333
$$

(b) Adiabatic change: $p_{1} V_{1}^{\gamma}=p_{3} V_{3}^{\gamma}$ so

$$
\frac{p_{3}}{p_{1}}=\left(\frac{V_{1}}{V_{3}}\right)^{\gamma}=\frac{1}{(3.00)^{7 / 5}}=0.215
$$

(c) Adiabatic change: $T_{1} V_{1}^{\gamma-1}=T_{3} V_{3}^{\gamma-1}$ so

$$
\frac{T_{3}}{T_{1}}=\left(\frac{V_{1}}{V_{3}}\right)^{\gamma-1}=\frac{1}{(3.00)^{2 / 5}}=0.644
$$

(d) For the isothermal expansion

$$
W=\int_{V_{1}}^{V_{2}} p d V=\int_{V_{1}}^{V_{2}} \frac{n R T_{1}}{V} d V=n R T_{1} \int_{V_{1}}^{V_{2}} \frac{d V}{V}=n R T_{1} \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

so

$$
\frac{W}{n R T_{1}}=\ln \left(\frac{V_{2}}{V_{1}}\right)=\ln (3.00)=1.10 .
$$

(e) For the isothermal expansion of an ideal gas there is no change in internal energy, so

$$
\frac{Q}{n R T_{1}}=\frac{W}{n R T_{1}}=1.10 .
$$

(f) For the isothermal expansion of an ideal gas there is no change in internal energy, $\Delta E_{\text {int }}=0$.
(g) For the adiabatic compression $p V^{\gamma}=p_{1} V_{1}^{\gamma}$ so

$$
\begin{aligned}
W & =\int_{V_{3}}^{V_{1}} p d V=\int_{V_{3}}^{V_{1}} \frac{p_{1} V_{1}^{\gamma}}{V^{\gamma}} d V=p_{1} V_{1}^{\gamma} \int_{V_{3}}^{V_{1}} \frac{1}{V^{\gamma}} d V=p_{1} V_{1}^{\gamma}\left[-\frac{1}{(\gamma-1) V^{\gamma-1}}\right]_{V_{3}}^{V_{1}} \\
& =-\frac{p_{1} V_{1}^{\gamma}}{\gamma-1}\left[\frac{1}{V_{1}^{\gamma-1}}-\frac{1}{V_{3}^{\gamma-1}}\right]=-\frac{p_{1} V_{1}}{\gamma-1}\left[1-\left(\frac{V_{1}}{V_{3}}\right)^{\gamma-1}\right]
\end{aligned}
$$

and

$$
\frac{W}{n R T_{1}}=-\frac{1}{\gamma-1}\left[1-\left(\frac{V_{1}}{V_{3}}\right)^{\gamma-1}\right]=-\frac{1}{2 / 5}\left[1-\frac{1}{(3.00)^{2 / 5}}\right]=-0.889 .
$$

(h) For the adiabatic compression $Q=0$.
(i) For the adiabatic compression

$$
\frac{\Delta E_{\text {int }}}{n R T_{1}}=\frac{Q}{n R T_{1}}-\frac{W}{n R T_{1}}=0.889 .
$$

(j) For the cooling at constant volume to reduce pressure, $W=0$.
(k) For the cycle $\Delta E_{\mathrm{int}}=0$, i.e. $\Delta E_{\mathrm{int}, 1 \rightarrow 2}+\Delta E_{\mathrm{int}, 2 \rightarrow 3}+\Delta E_{\mathrm{int}, 3 \rightarrow 1}=0$, but we know $\Delta E_{\mathrm{int}, 1 \rightarrow 2}$ from part (f) and $\Delta E_{\mathrm{int}, 3 \rightarrow 1}$ from part (j). For the cooling at constant volume to reduce pressure,

$$
\frac{\Delta E_{\mathrm{int}}}{n R T_{1}}=-0.889
$$

(ℓ) Using $\Delta E_{\mathrm{int}}=Q-W$ for this cooling,

$$
\frac{Q}{n R T_{1}}=-0.889
$$

Grading: one point per lettered item for a total of 12 points.

