Oberlin College Physics 111, Spring 2024
 Assignment 12

Monday, 29 April
This is the last problem assignment!
Reading: Chapter 3, "The First Law of Thermodynamics", and chapter 4, "The Second Law of Thermodynamics". (Section 4.7, "Entropy on a Microscopic Scale", contains errors that I will detail on the final class.)

Laboratory: This week, "Polarization of Light". Final week of the semester, "Calorimetry".
Final exam will be Thursday, 16 May, from 9 Am to 11 AM.
Problems: Two problems, due Wednesday, 8 May.

- Open the stopcock

Container A holds an ideal gas at pressure $5.2 \times 10^{5} \mathrm{~Pa}$ and temperature 300 K (room temperature). It is connected via a thin tube, closed with a valve, to container B with 3.3 times the volume of container A. Container B holds the same ideal gas at pressure $1.0 \times 10^{5} \mathrm{~Pa}$ (atmospheric pressure) and temperature 373 K (temperature of boiling water). The valve is opened to allow the pressure to equalize, but the temperature of each container remains the same. What is the pressure now?

- Change in a cycle

Suppose n moles of an ideal gas with $\gamma=\frac{7}{5}$ are taken reversibly through the cycle outlined below, with $V_{23}=3.00 V_{1}$.

What are (a) p_{2} / p_{1}, (b) p_{3} / p_{1}, and (c) T_{3} / T_{1} ?
For path $1 \rightarrow 2$, what are (d) $W / n R T_{1}$, (e) $Q / n R T_{1}$, and (f) $\Delta E_{\text {int }} / n R T_{1}$?
For path $3 \rightarrow 1$, what are (g) $W / n R T_{1}$, (h) $Q / n R T_{1}$, and (i) $\Delta E_{\mathrm{int}} / n R T_{1}$?
For path $2 \rightarrow 3$, what are $(\mathrm{j}) W / n R T_{1}$, (k) $\Delta E_{\mathrm{int}} / n R T_{1}$, and ($\left.\ell\right) Q / n R T_{1}$?

Practice problems: I recommend that you work these problems from LSM chapter 3: 31, 37, 41. But don't bother to write up and turn in your solutions... instead, check them against the "answer key" in the back of the book.

