
Oberlin College Physics 110, Fall 2011

Model Solutions to Assignment 8

HRW problem 8–12: Snowball.

Energy at top of cliff is mgh+ 1
2mv

2
i .

Energy at bottom of cliff is 1
2mv

2
f .

The forces are conservative, so these two energies are equal and v2
f = v2

i + 2gh.

a. Plugging in values gives a final speed of 21.0 m/s.

b and c. It is clear from the expression that the final speed is independent of both mass and launch angle.

HRW problem 8–22: Ski jump.

Stage I: Find speed of skier as he leaves the ramp — use energy conservation.

Let m represent the mass of the skier, H the height of the mountain.

Energy at top of the mountain is mgH.

Energy as he leaves the ramp is 1
2mv

2.

The normal force does no work, and friction is negligible, so these two energies are equal and

v2 = 2gH.

Thus the speed of the skier leaving the ramp is

vramp =
√

2gH.

Stage II: Find height of the jump — use kinematics.

Let θ represent the angle of the ski jump. (In our case, θ = 28◦.)

Recall that in trajectories the horizontal and vertical motions are independent. In this problem we only

care about the vertical motion. Also, in this problem we want to relate velocities and distances — we’re not

concerned about time. So the equation to use is clearly

v2
y = v2

y,0 − 2gy.

The vertical component of the initial velocity is

vy,0 = vramp sin θ,

and the maximum height y = h is achieved when vy = 0. Thus

h =
v2
y,0

2g
=

(vramp sin θ)2

2g
= H sin2 θ.

(Notice that this gives the correct result when θ = 0◦ and when θ = 90◦.)

Answers: Plugging in the numbers from the problem, h = 4.4 m. This height is independent of the mass

of the skier and of the value of g.

1



HRW problem 8–34: Ice mound.

geometry diagram: free body diagram:

N

mgmg cos θ

θ R

R 
co

s θ

Needed: the normal force N on the boy, which vanishes when the boy leaves the ice.

First use force techniques. Apply
∑ ~F = m~a in the radial direction:

mg cos θ −N = ma = m
v2

R

so

N = mg cos θ − mv2

R
. (1)

But what is mv2?

Find this using energy techniques.

E = 1
2mv

2 +mgR cos θ

= Einitial = mgR

Thus

mv2 = 2mgR(1− cos θ). (2)

Combining equations (1) and (2) gives

N = mg cos θ − 2mg(1− cos θ)

= mg(3 cos θ − 2).

The boy leaves the ice when N = 0, that is when cos θ = 2
3 . Since the height is R cos θ, the boy leaves the

ice at a height of 2
3R.
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HRW problem 8–36: Spring gun.

Stage I: The spring is compressed by distance d, then expands to its relaxed length, giving the marble a

velocity v0. What is v0? This is an energy conservation problem:

Einitial = 1
2kd

2 + 1
2m(0)2

Efinal = 1
2k(0)2 + 1

2mv
2
0

So

v0 =
√
k/md (1)

Stage II: The marble leaves the spring with horizontal velocity v0 from a height H above the floor. How

far to the right of the launch point does it land? This is a trajectory problem:

x(t) = v0t

y(t) = H − 1
2gt

2

The ball hits the floor when y(t) = 0, that is when t =
√

2H/g, at which time x(t) is

xhit = v0

√
2H/g. (2)

Combining equations (1) and (2) gives

xhit =

√
2kH

mg
d.

(This equation makes sense: correct dimensions, increasing xhit with increasing H, etc.) We don’t know k,

H, or m, but we do know that there’s a (dimensionless) constant C such that

xhit = Cd.

Bobby’s experiment discovers that if d = 1.10 cm, then xhit = 193 cm. From this we conclude that C = 175.

Thus to make xhit = 220 cm, Rhoda must set a d of 1.25 cm.
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HRW problem 8–40: Oxygen molecule.

The potential energy is

U(r) =
A

r12
− B

r6

so the force is

F (r) = −dU(r)

dr
= −

(
−12A

r13
− −6B

r7

)
=

12A

r13
− 6B

r7
.

(a) This force is zero at the distance req such that F (req) = 0. This happens when

2A

r13
eq

=
B

r7
eq

or

req = (2A/B)1/6.

(b) For small values of r, r7 is small, but r13 is really small. Thus 1/r7 is big, but 1/r13 is really big.

Consequently,

for r � req,
12A

r13
� 6B

r7

whence the force is positive, i.e. points towards larger values of r, i.e. is repulsive.

(c) For large values of r, the reasoning is parallel: r7 is large, but r13 is really large. Thus 1/r7 is small, but

1/r13 is really small. Consequently,

for r � req,
12A

r13
� 6B

r7

whence the force is negative, i.e. points towards smaller values of r, i.e. is attractive.

Additional problem 81: Daredevil astronomer.

This is a pretty formidable problem and if you just jump into it without a strategy you’ll almost certainly

get lost. But if you remember to look before you leap, to use symbols rather than numbers, and generally

to use all the problem solving techniques we’ve discussed this semester, then you’ll find the problem to be

challenging but not overwhelming, and a lot of fun as well.

Look before you leap: This problem breaks into two stages: the motion while the astronomer skates on

the dome, and the motion after he or she leaves the dome. The first stage is exactly the problem we solved

in “Ice mound”. The second stage is a trajectory problem and we know how to solve any such problem given

the initial position and velocity (i.e. the position and velocity at which the astronomer leaves the dome).
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R R

( 5/3)R

(2/3)R

v0

(2/3)v0

( 5/3)v0

(b)(a)

origin

Stage I: Rolling down the dome. The astronomer leaves the dome 1/3 of the way down. The triangle at

subfigure (a) shows that this is (2/3)R above the base of the dome, and (
√

5/3)R to the right of the center

of the dome. (Pythagorean theorem.) That is, he begins free flight at

x0 = (
√

5/3)R, y0 = h+ (2/3)R.

What is his velocity when he leaves? The magnitude comes from energy conservation:

at top of dome energy is mg(h+R)

upon leaving dome energy is 1
2mv

2
0 +mg(h+ 2

3R)

so 1
2mv

2
0 = mg 1

3R

and v0 =
√

2
3gR.

The velocity components come from the geometry of subfigure (b). (The triangle in (b) is similar to the

triangle in (a).) We have

v0,x = 2
3

√
2
3gR, v0,y = −

√
5

3

√
2
3gR = − 1

3

√
10
3 gR.

Stage II: Free flight. A particle (or an astronomer) is launched at (x0, y0) with velocity (v0,x, v0,y). Where

does it (or he or she) hit the ground?

x(t) = x0 + v0,xt

y(t) = y0 + v0,yt− 1
2gt

2
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It hits at time thit when y(thit) = 0.

0 = y0 + v0,ythit − 1
2gt

2
hit

thit =
−v0,y ±

√
v2

0,y − 4(−g/2)y0

2(−g/2)

=
v0,y ∓

√
v2

0,y + 2gy0

g

To get a positive thit, choose the + sign. Plug this result into the equation for x(t) to find

x(thit) = x0 +
v0,x

g

(
v0,y +

√
v2

0,y + 2gy0

)
.

Put together. Plug the values from the end of stage I into the general result for xhit:

xhit =
√

5
3 R+ 2

3

√
2
3gR

(
1

g

)(
− 1

3

√
10
3 gR+

√
1
9

10
3 gR+ 2gh+ 2g 2

3R

)
=

√
5

3 R+ 2
3

√
2
3R

(
− 1

3

√
10
3 R+

√
46
27R+ 2h

)
=

[√
5

3 + 2
3

√
2
3

(
− 1

3

√
10
3 +

√
46
27 + 2(h/R)

)]
R

=
1

3

[√
5− 2

9

√
20 +

2

9

√
92 + 108(h/R)

]
R.

Note that the hit position is independent of g, just as it was in the “pendulum challenge” lab. In our case

(h/R) = 2 so

xhit =
1

3

[√
5− 2

9

√
20 +

2

9

√
308

]
R = 1.71R.

But we want the distance from the observatory wall, which is

xhit −R = 0.71R = 5.7 meters.
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HRW problem 9-53: Car hits moose.

mC

before:

mM

mC + mM

after:

vi

vf

This is an inelastic collision.

initial KE: 1
2mCv

2
i =

p2

2mC
final KE: 1

2 (mC +mM )v2
f =

p2

2(mC +mM )

Note there’s no need to distinguish initial momentum from final momentum, because momentum is conserved.

KE lost:
p2

2mC
− p2

2(mC +mM )

So the fraction of KE lost is

p2

2mC
− p2

2(mC +mM )

p2

2mC

=

1

mC
− 1

mC +mM

1

mC

=
mC +mM − mC

mC +mM
=

mM

mC +mM
=

1

mC/mM + 1

a. For moose, fraction of KE lost is 1/( 10
5 + 1) = 33%.

b. For camel, fraction of KE lost is 1/( 10
3 + 1) = 23%.

c. In general, decreasing mM will decrease the fraction of KE lost.
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HRW problem 9–90: Neutrino (omit part c).

initial final

θ

electron

neutrino

new nucleus

The three momentum arrows shown on the right must sum to zero.

Thus the magnitude of the momentum of the recoiling new nucleus is√
(12)2 + (6.4)2 × 10−23 kg·m/s = 14× 10−23 kg·m/s.

The angle θ shown in the figure has

tan(θ) =
6.4

12
whence θ = 28◦.

Angle between new nucleus and neutrino is 118◦; angle between new nucleus and electron is 152◦.
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