Scattering wave function: Feynman-Hibbs problem 6-13
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Solution to problem 6-13 in Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert
R. Hibbs (McGraw-Hill, New York, 1965).

Begin with equation (6-61):
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Combine with the expression for the three-dimensional free-particle propagator (derived from equation 3-3),
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Collect the time dependence to find that the second line above is
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We wish to evaluate the time integral — the one within curly brackets. Use the definition rZ, = (R —r.)?
to write this as .
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This integral is ripe for the substitution
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where z is real (because 0 < t. < t;) and dimensionless. As ¢. goes from 0 to t,
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Carrying out this substitution, the integral is
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where
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Using E, = p?/2m, write this expression as
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This integral is of the form -
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with a and b real and positive. In general, the evaluation of this integral involves the error function erf(x).

However in the case that x; = 0 the integral has the simple value
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Thus, in the limit that
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the expression (8) becomes
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Note that in the limit (9), it is not sufficient to say “t, is very large”. One must say “t, is large compared

”

to...” compared to what? Compared to something with the dimensions of time, and in particular, large

compared to mrg./2h.

Now, going back, we find that expression (4) is equal to
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subject to the proviso that limit (9) holds for all values of 7. where V(r.) is non-negligible — that is, subject
to the proviso that
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Finally, substitution back into (3) produces
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