Scattering wave function: Feynman-Hibbs problem 6-13

Dan Styer, Oberlin College Physics Department, Oberlin, Ohio 44074
3 January 2005
Solution to problem 6-13 in Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert R. Hibbs (McGraw-Hill, New York, 1965).

Begin with equation (6-61):

$$
\begin{equation*}
\psi\left(\mathbf{R}_{b}, t_{b}\right)=e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{R}_{b}} e^{-(i / \hbar) E_{a} t_{b}}-\frac{i}{\hbar} \int_{0}^{t_{b}} \int^{\mathbf{r}_{c}} K_{0}\left(\mathbf{R}_{b}, t_{b} ; \mathbf{r}_{c}, t_{c}\right) V\left(\mathbf{r}_{\mathbf{c}}, t_{c}\right) e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{r}_{c}} e^{-(i / \hbar) E_{a} t_{c}} d^{3} \mathbf{r}_{c} d t_{c} \tag{1}
\end{equation*}
$$

Combine with the expression for the three-dimensional free-particle propagator (derived from equation 3-3),

$$
\begin{equation*}
K_{0}\left(\mathbf{R}_{b}, t_{b} ; \mathbf{r}_{c}, t_{c}\right)=\left[\frac{m}{2 \pi i \hbar\left(t_{b}-t_{c}\right)}\right]^{3 / 2} \exp \frac{i m\left(\mathbf{R}_{b}-\mathbf{r}_{c}\right)^{2}}{2 \hbar\left(t_{b}-t_{c}\right)} \tag{2}
\end{equation*}
$$

to make (for time-independent potentials)

$$
\begin{align*}
\psi\left(\mathbf{R}_{b}, t_{b}\right)= & e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{R}_{b}} e^{-(i / \hbar) E_{a} t_{b}} \\
& -\frac{i}{\hbar} \int_{0}^{t_{b}} \int^{\mathbf{r}_{c}}\left[\frac{m}{2 \pi i \hbar\left(t_{b}-t_{c}\right)}\right]^{3 / 2} \exp \frac{i m\left(\mathbf{R}_{b}-\mathbf{r}_{c}\right)^{2}}{2 \hbar\left(t_{b}-t_{c}\right)} V\left(\mathbf{r}_{\mathbf{c}}\right) e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{r}_{c}} e^{-(i / \hbar) E_{a} t_{c}} d^{3} \mathbf{r}_{c} d t_{c} \tag{3}
\end{align*}
$$

Collect the time dependence to find that the second line above is

$$
\begin{equation*}
-\frac{i}{\hbar} \int^{\mathbf{r}_{c}} V\left(\mathbf{r}_{\mathbf{c}}\right) e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{r}_{c}}\left\{\int_{0}^{t_{b}}\left[\frac{m}{2 \pi i \hbar\left(t_{b}-t_{c}\right)}\right]^{3 / 2} \exp \frac{i m\left(\mathbf{R}_{b}-\mathbf{r}_{c}\right)^{2}}{2 \hbar\left(t_{b}-t_{c}\right)} e^{-(i / \hbar) E_{a} t_{c}} d t_{c}\right\} d^{3} \mathbf{r}_{c} \tag{4}
\end{equation*}
$$

We wish to evaluate the time integral - the one within curly brackets. Use the definition $r_{b c}^{2}=\left(\mathbf{R}_{b}-\mathbf{r}_{c}\right)^{2}$ to write this as

$$
\begin{equation*}
\int_{0}^{t_{b}}\left[\frac{m}{2 \pi i \hbar\left(t_{b}-t_{c}\right)}\right]^{3 / 2} \exp \frac{i m r_{b c}^{2}}{2 \hbar\left(t_{b}-t_{c}\right)} e^{-(i / \hbar) E_{a} t_{c}} d t_{c} \tag{5}
\end{equation*}
$$

This integral is ripe for the substitution

$$
\begin{equation*}
x^{2}=\frac{m r_{b c}^{2}}{2 \hbar\left(t_{b}-t_{c}\right)}, \quad t_{c}=t_{b}-\frac{m r_{b c}^{2}}{2 \hbar x^{2}} \tag{6}
\end{equation*}
$$

where x is real (because $0 \leq t_{c} \leq t_{b}$) and dimensionless. As t_{c} goes from 0 to t_{b},

$$
x \text { goes from }\left[\frac{m r_{b c}^{2}}{2 \hbar t_{b}}\right]^{1 / 2} \text { to } \infty
$$

Note that

$$
\begin{aligned}
2 x d x & =\frac{m r_{b c}^{2}}{2 \hbar\left(t_{b}-t_{c}\right)^{2}} d t_{c} \\
2\left[\frac{m r_{b c}^{2}}{2 \hbar\left(t_{b}-t_{c}\right)}\right]^{1 / 2} d x & =\frac{m r_{b c}^{2}}{2 \hbar\left(t_{b}-t_{c}\right)^{2}} d t_{c} \\
2 \frac{1}{r_{b c}} \frac{m}{2 \hbar} d x & =\left[\frac{m}{2 \hbar\left(t_{b}-t_{c}\right)}\right]^{3 / 2} d t_{c}
\end{aligned}
$$

Carrying out this substitution, the integral is

$$
\begin{equation*}
\frac{1}{(\pi i)^{3 / 2}} \frac{1}{r_{b c}} \frac{m}{\hbar} e^{-(i / \hbar) E_{a} t_{b}} \int_{x_{b}}^{\infty} e^{i x^{2}} e^{(i / \hbar) E_{a}\left(m r_{b c}^{2} / 2 \hbar\right) / x^{2}} d x \tag{7}
\end{equation*}
$$

where

$$
x_{b} \equiv\left[\frac{m r_{b c}^{2}}{2 \hbar t_{b}}\right]^{1 / 2}
$$

Using $E_{a}=p_{a}^{2} / 2 m$, write this expression as

$$
\begin{equation*}
\frac{1}{(\pi i)^{3 / 2}} \frac{1}{r_{b c}} \frac{m}{\hbar} e^{-(i / \hbar) E_{a} t_{b}} \int_{x_{b}}^{\infty} e^{i x^{2}} e^{i\left(p_{a} r_{b c} / 2 \hbar\right)^{2} / x^{2}} d x . \tag{8}
\end{equation*}
$$

This integral is of the form

$$
\int_{x_{b}}^{\infty} \exp \left(i a / x^{2}+i b x^{2}\right) d x
$$

with a and b real and positive. In general, the evaluation of this integral involves the error function $\operatorname{erf}(x)$. However in the case that $x_{b}=0$ the integral has the simple value

$$
\int_{0}^{\infty} \exp \left(i a / x^{2}+i b x^{2}\right) d x=\sqrt{\frac{i \pi}{4 b}} \exp (i 2 \sqrt{a b})
$$

Thus, in the limit that

$$
\begin{equation*}
\frac{m r_{b c}^{2}}{2 \hbar t_{b}} \rightarrow 0 \tag{9}
\end{equation*}
$$

the expression (8) becomes

$$
\begin{equation*}
\frac{1}{(\pi i)^{3 / 2}} \frac{1}{r_{b c}} \frac{m}{\hbar} e^{-(i / \hbar) E_{a} t_{b}}\left[\sqrt{\frac{i \pi}{4}} \exp \left(i p_{a} r_{b c} / \hbar\right)\right]=\frac{1}{2 \pi i} e^{-(i / \hbar) E_{a} t_{b}} e^{(i / \hbar) p_{a} r_{b c}} \frac{1}{r_{b c}} \frac{m}{\hbar} \tag{10}
\end{equation*}
$$

Note that in the limit (9), it is not sufficient to say " t_{b} is very large". One must say " t_{b} is large compared to..." compared to what? Compared to something with the dimensions of time, and in particular, large compared to $m r_{b c}^{2} / 2 \hbar$.

Now, going back, we find that expression (4) is equal to

$$
\begin{equation*}
-\frac{m}{2 \pi \hbar^{2}} e^{-(i / \hbar) E_{a} t_{b}} \int^{\mathbf{r}_{c}} \frac{1}{r_{b c}} e^{(i / \hbar) p_{a} r_{b c}} V\left(\mathbf{r}_{\mathbf{c}}\right) e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{r}_{c}} d^{3} \mathbf{r}_{c}, \tag{11}
\end{equation*}
$$

subject to the proviso that limit (9) holds for all values of $r_{b c}$ where $V\left(\mathbf{r}_{c}\right)$ is non-negligible - that is, subject to the proviso that

$$
\begin{equation*}
\frac{m R_{b}^{2}}{2 \hbar t_{b}} \rightarrow 0 \tag{12}
\end{equation*}
$$

Finally, substitution back into (3) produces

$$
\psi\left(\mathbf{R}_{b}, t_{b}\right)=e^{-(i / \hbar) E_{a} t_{b}}\left[e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{R}_{b}}-\frac{m}{2 \pi \hbar^{2}} \int^{\mathbf{r}_{c}} \frac{1}{r_{b c}} e^{(i / \hbar) p_{a} r_{b c}} V\left(\mathbf{r}_{\mathbf{c}}\right) e^{(i / \hbar) \mathbf{p}_{a} \cdot \mathbf{r}_{c}} d^{3} \mathbf{r}_{c}\right] .
$$

