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Solution to problem 3-10 in Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert
R. Hibbs (McGraw-Hill, New York, 1965).

This solution breaks into three parts:

e Generalize the argument in section 3-5 to show that

K (b,a) = el/MSalbal py, 4y,

e Find S [b,a]. This is a purely classical problem.

e Find F(tp,t,) by composition of paths trick, generalized from problem 3-7.

Kernel in terms of classical action. The lagrangian is

L= E[xQ + 9 4 22 + way — wyi].

Following equation (3.47), we write the trajectory (z(t), y(t), 2(t)) as a sum of the classical trajectory and a

deviation:
w(t) =z(t) +ap(t)  y@t) =y(t) +yp®)  2(t) = 2(t) + 2p(t).
The argument precisely follows the reasoning up to equation (3.49), which becomes

0
K(b,a) = e(i/MSalbal /

. ty
exp{ Lm / [x;)D + y% + ,éQD +wrpyYp — wYppl dt} Dap(t) Dyp(t) Dzp(t).
0

ne ),
The payoff here has been great: Not only do we find that the kernel is a product of e(*/™5e[b:al times an

z-independent function F(tp,t,), but we also find that this function is precisely the kernel with the same

lagrangian but moving from the origin at time ¢, to the origin at time %;. In other words,

K(b,a) = e(i/h)Sa [b’“]F(tb,ta) — e(i/h)SCz[b,a]K(OJb; 0,t4).

Finding the classical action S.. We can do this directly by finding the classical motion and then inte-
grating over time to find the action, but this theorem makes the problem considerably easier. (I know. I did
it directly before finding the theorem, and it’s a bear that way.)

Theorem: The classical action for this problem is

Sa = 5 [wd+yy + 2],



Proof: The classical force is
F=SvxB

whence
eB

v i 2) = 22 (5, —i.0) = w(y —. 0).
(&,9,2) = — (9, ~,0) = w(y, ~2,0)
The classical action is defined by
m [t
S, = 5/ [2% 4+ 9% + 2% + way — wyd] dt.
t

a

Look at the first term using integration by parts:

ty tp
/ i?dt =[] — / xi dt
t ta

: .
X —/ xwy dt
t
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SO b
/ (6% + wag] dt = [z]l.

ta
A similar result holds for y, and the result for z is trivial. Minor clean-up produces the stated result.

The free translation in the z direction is easily taken care of and we don’t mention it in the following

The classical cyclotron orbit is of course the circular motion, of radius R and centered at (z¢,yc),
sketched below:

(XcYo)
(X3 Ya)

(%o :Yp)

With a suitable time origin this circular motion has position coordinates
(z(t),y(t)) = (xrc + Rcoswt, yc — Rsinwt)

and thus velocity coordinates
(#(t),9(t)) = w(—Rsinwt, —R cos wt).

So the position and velocity are related (for any time origin) through

i(t) =w(y(t) —yo)  9(t) = —w(z(t) - zc).



Applying our theorem, the classical action becomes

mw mw mw
Se1 = 5 [z(y —ye) —ylz — xc)}iz =5 [—zyc + yzc]iz =5 [~ (6 — 2a)yc + (Yb — Ya)zC] -

Thus the only problem remaining is the purely geometrical one of finding the center point (z¢, y¢) in terms
of (4, Ya), (xp,ys) and time T'. (This was, for me, the hardest part of the problem.)

Ty +Tq Yb+ Ya
2 ’ 2

If the distance from point M to the center is dj;c, then

The coordinates of point M are

1 2 2
9 — da + — Ya
tan(u7/2) — 20— vl
MC
Furthermore, the vector

(¥ = Yar — (21 — 2a))

is parallel to the vector from point M to the center. Putting these three items together, the coordinates of
the center point are

(@ )= Tyt Ta Yot ya) 1 Yo —Ya Tb—Tq
¢ yo 2 2 tan(wl/2) \ 2 ' 2 )°

Now, plugging these coordinates into our expression for S,

mw
Sa = - {=(xy — za)yc + (v — ya)zc}

— mw —(Z‘ —l‘) yb"'ya_ 1 Ty — Tqg +( _ ) xb+$a+ 1 Yo — Ya
2 bT el T tan(wl/2) 2 Yo Ya) |7 tan(wl/2) 2

= = {MK% —2a)’ + (9 = ya)’] + [zams — ”bya]} '

Thus the expression for the kernel is

im [ (zp — 24)> w
K(t.a) = Pty {3 5 (75 4 i 00 4 - 0]+ ol = ] ) |

All that remains is to find the time-dependent prefactor F'(tp,ts).

Finding the prefactor. The prefactor associated with the free motion in the z direction is the standard

_m
2mihT’

so again we concentrate only on the x and y motion.

We realize that F(t,t,) = K(0,tp;0,t,) and that for any time t. between t, and ¢, (see equation 2.31),

+oo “+o0
K(Oatb§07ta) :/ dJUC/ dch(O,tb;JJc,chc)K(mc,yc,fc;07ta)-



But we have an explicit expression for K(z¢,ye, te;0,t,). Plugging this into the above equation results in

F(ty,ta) = Fltote)F(te,ta) /_ :O da. /_ :O dy. exp{;”; ( tan(w(:,/ f %) [z +y31>}

F(ty, t.)F(te,t o {;‘n; (t&rl(cu(;uc/E ta)/2) [z + yf]) }
byte)F(te, ta
h dx
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4n (tan(w(tb—tc)/2 tan(w(tc—ta)/Q))

Now adopt a notation inspired by Feynman’s suggestion in problem 3-7, namely t.—t, = s and t, —t. = t,

and
m

F(t) = sog(t).

This results in
g(t+s) =

g(t)g(s) { tan(wt/2) tan(ws/2) }
w/2 |tan(wt/2) + tan(ws/2) |

Do you remember the sum formula for tangents? Neither do I, but I can look it up.

sin(A + B)
tan A 4+ tan B = osAcosB
%  g(B)g(s) [sin(wt/2)sin(ws/2)
gt +s) = w/2 { sin(w(t + 5)/2) ]
gt 8)sinfit +)/2) = s la(t) sin(et/2)][o(s) sinfos/ 2.
It’s obvious that one solution is /9
g(t) = sin(wi/2)’

and a little futzing around shows that this is the only physically relevant solution.

Throwing the pieces together,

= (e () (5[
* <tan(gij/721/2)> [(x6 = 2a)? + (Y5 — a)®] + W (Tayp — xbya)] } :



