Kernel for charged particle in magnetic field: Feynman-Hibbs problem 3-10

Dan Styer, Oberlin College Physics Department, Oberlin, Ohio 44074
18 December 2006
Solution to problem 3-10 in Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert R. Hibbs (McGraw-Hill, New York, 1965).

This solution breaks into three parts:

- Generalize the argument in section 3-5 to show that

$$
K(b, a)=e^{(i / \hbar) S_{c l}[b, a]} F\left(t_{b}, t_{a}\right)
$$

- Find $S_{c l}[b, a]$. This is a purely classical problem.
- Find $F\left(t_{b}, t_{a}\right)$ by composition of paths trick, generalized from problem 3-7.

Kernel in terms of classical action. The lagrangian is

$$
L=\frac{m}{2}\left[\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}+\omega x \dot{y}-\omega y \dot{x}\right] .
$$

Following equation (3.47), we write the trajectory $(x(t), y(t), z(t))$ as a sum of the classical trajectory and a deviation:

$$
x(t)=\bar{x}(t)+x_{D}(t) \quad y(t)=\bar{y}(t)+y_{D}(t) \quad z(t)=\bar{z}(t)+z_{D}(t)
$$

The argument precisely follows the reasoning up to equation (3.49), which becomes

$$
K(b, a)=e^{(i / \hbar) S_{c l}[b, a]} \int_{0}^{0} \exp \left\{\frac{i}{\hbar} \frac{m}{2} \int_{t_{a}}^{t_{b}}\left[\dot{x}_{D}^{2}+\dot{y}_{D}^{2}+\dot{z}_{D}^{2}+\omega x_{D} \dot{y}_{D}-\omega y_{D} \dot{x}_{D}\right] d t\right\} \mathcal{D} x_{D}(t) \mathcal{D} y_{D}(t) \mathcal{D} z_{D}(t)
$$

The payoff here has been great: Not only do we find that the kernel is a product of $e^{(i / \hbar) S_{c l}[b, a]}$ times an x-independent function $F\left(t_{b}, t_{a}\right)$, but we also find that this function is precisely the kernel with the same lagrangian but moving from the origin at time t_{a} to the origin at time t_{b}. In other words,

$$
K(b, a)=e^{(i / \hbar) S_{c l}[b, a]} F\left(t_{b}, t_{a}\right)=e^{(i / \hbar) S_{c l}[b, a]} K\left(\mathbf{0}, t_{b} ; \mathbf{0}, t_{a}\right)
$$

Finding the classical action $S_{c l}$. We can do this directly by finding the classical motion and then integrating over time to find the action, but this theorem makes the problem considerably easier. (I know. I did it directly before finding the theorem, and it's a bear that way.)

Theorem: The classical action for this problem is

$$
S_{c l}=\frac{m}{2}\left[x \dot{x}+y \dot{y}+\dot{z}^{2} t\right]_{t_{a}}^{t_{b}}
$$

Proof: The classical force is

$$
\mathbf{F}=\frac{\mathrm{e}}{c} \mathbf{v} \times \mathbf{B}
$$

whence

$$
(\ddot{x}, \ddot{y}, \ddot{z})=\frac{\mathrm{e} B}{m c}(\dot{y},-\dot{x}, 0)=\omega(\dot{y},-\dot{x}, 0)
$$

The classical action is defined by

$$
S_{c l}=\frac{m}{2} \int_{t_{a}}^{t_{b}}\left[\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}+\omega x \dot{y}-\omega y \dot{x}\right] d t
$$

Look at the first term using integration by parts:

$$
\begin{aligned}
\int_{t_{a}}^{t_{b}} \dot{x}^{2} d t & =[x \dot{x}]_{t_{a}}^{t_{b}}-\int_{t_{a}}^{t_{b}} x \ddot{x} d t \\
& =[x \dot{x}]_{t_{a}}^{t_{b}}-\int_{t_{a}}^{t_{b}} x \omega \dot{y} d t
\end{aligned}
$$

so

$$
\int_{t_{a}}^{t_{b}}\left[\dot{x}^{2}+\omega x \dot{y}\right] d t=[x \dot{x}]_{t_{a}}^{t_{b}}
$$

A similar result holds for y, and the result for z is trivial. Minor clean-up produces the stated result.
The free translation in the z direction is easily taken care of and we don't mention it in the following
The classical cyclotron orbit is of course the circular motion, of radius R and centered at $\left(x_{C}, y_{C}\right)$, sketched below:

With a suitable time origin this circular motion has position coordinates

$$
(x(t), y(t))=\left(x_{C}+R \cos \omega t, y_{C}-R \sin \omega t\right)
$$

and thus velocity coordinates

$$
(\dot{x}(t), \dot{y}(t))=\omega(-R \sin \omega t,-R \cos \omega t)
$$

So the position and velocity are related (for any time origin) through

$$
\dot{x}(t)=\omega\left(y(t)-y_{C}\right) \quad \dot{y}(t)=-\omega\left(x(t)-x_{C}\right)
$$

Applying our theorem, the classical action becomes

$$
S_{c l}=\frac{m \omega}{2}\left[x\left(y-y_{C}\right)-y\left(x-x_{C}\right)\right]_{t_{a}}^{t_{b}}=\frac{m \omega}{2}\left[-x y_{C}+y x_{C}\right]_{t_{a}}^{t_{b}}=\frac{m \omega}{2}\left[-\left(x_{b}-x_{a}\right) y_{C}+\left(y_{b}-y_{a}\right) x_{C}\right]
$$

Thus the only problem remaining is the purely geometrical one of finding the center point $\left(x_{C}, y_{C}\right)$ in terms of $\left(x_{a}, y_{a}\right),\left(x_{b}, y_{b}\right)$ and time T. (This was, for me, the hardest part of the problem.)

The coordinates of point M are

$$
\left(\frac{x_{b}+x_{a}}{2}, \frac{y_{b}+y_{a}}{2}\right)
$$

If the distance from point M to the center is $d_{M C}$, then

$$
\tan (\omega T / 2)=\frac{\frac{1}{2} \sqrt{\left(x_{b}-x_{a}\right)^{2}+\left(y_{b}-y_{a}\right)^{2}}}{d_{M C}}
$$

Furthermore, the vector

$$
\left(y_{b}-y_{a},-\left(x_{b}-x_{a}\right)\right)
$$

is parallel to the vector from point M to the center. Putting these three items together, the coordinates of the center point are

$$
\left(x_{C}, y_{C}\right)=\left(\frac{x_{b}+x_{a}}{2}, \frac{y_{b}+y_{a}}{2}\right)+\frac{1}{\tan (\omega T / 2)}\left(\frac{y_{b}-y_{a}}{2},-\frac{x_{b}-x_{a}}{2}\right) .
$$

Now, plugging these coordinates into our expression for $S_{c l}$,

$$
\begin{aligned}
S_{c l} & =\frac{m \omega}{2}\left\{-\left(x_{b}-x_{a}\right) y_{C}+\left(y_{b}-y_{a}\right) x_{C}\right\} \\
& =\frac{m \omega}{2}\left\{-\left(x_{b}-x_{a}\right)\left[\frac{y_{b}+y_{a}}{2}-\frac{1}{\tan (\omega T / 2)} \frac{x_{b}-x_{a}}{2}\right]+\left(y_{b}-y_{a}\right)\left[\frac{x_{b}+x_{a}}{2}+\frac{1}{\tan (\omega T / 2)} \frac{y_{b}-y_{a}}{2}\right]\right\} \\
& =\frac{m \omega}{2}\left\{\frac{1}{2 \tan (\omega T / 2)}\left[\left(x_{b}-x_{a}\right)^{2}+\left(y_{b}-y_{a}\right)^{2}\right]+\left[x_{a} y_{b}-x_{b} y_{a}\right]\right\}
\end{aligned}
$$

Thus the expression for the kernel is
$K(b, a)=F\left(t_{b}, t_{a}\right) \exp \left\{\frac{i}{\hbar} \frac{m}{2}\left(\frac{\left(z_{b}-z_{a}\right)^{2}}{T}+\frac{\omega / 2}{\tan (\omega T / 2)}\left[\left(x_{b}-x_{a}\right)^{2}+\left(y_{b}-y_{a}\right)^{2}\right]+\omega\left[x_{a} y_{b}-x_{b} y_{a}\right]\right)\right\}$.
All that remains is to find the time-dependent prefactor $F\left(t_{b}, t_{a}\right)$.
Finding the prefactor. The prefactor associated with the free motion in the z direction is the standard

$$
\sqrt{\frac{m}{2 \pi i \hbar T}}
$$

so again we concentrate only on the x and y motion.
We realize that $F\left(t_{b}, t_{a}\right)=K\left(\mathbf{0}, t_{b} ; \mathbf{0}, t_{a}\right)$ and that for any time t_{c} between t_{a} and t_{b} (see equation 2.31),

$$
K\left(\mathbf{0}, t_{b} ; \mathbf{0}, t_{a}\right)=\int_{-\infty}^{+\infty} d x_{c} \int_{-\infty}^{+\infty} d y_{c} K\left(\mathbf{0}, t_{b} ; x_{c}, y_{c}, t_{c}\right) K\left(x_{c}, y_{c}, t_{c} ; \mathbf{0}, t_{a}\right)
$$

But we have an explicit expression for $K\left(x_{c}, y_{c}, t_{c} ; \mathbf{0}, t_{a}\right)$. Plugging this into the above equation results in

$$
\begin{aligned}
& F\left(t_{b}, t_{a}\right)=F\left(t_{b}, t_{c}\right) F\left(t_{c}, t_{a}\right) \int_{-\infty}^{+\infty} d x_{c} \int_{-\infty}^{+\infty} d y_{c} \exp \left\{\frac{i}{\hbar} \frac{m}{2}\left(\frac{\omega / 2}{\tan \left(\omega\left(t_{b}-t_{c}\right) / 2\right)}\left[x_{c}^{2}+y_{c}^{2}\right]\right)\right\} \\
&=F\left(t_{b}, t_{c}\right) F\left(t_{c}, t_{a}\right) \\
& \quad \int_{-\infty}^{+\infty} d x_{c} \int_{-\infty}^{+\infty} d y_{c} \exp \left\{\frac{i m \omega}{\hbar} \frac{m}{2}\left(\frac{\omega / 2}{\tan \left(\omega\left(t_{c}-t_{a}\right) / 2\right)}\left[x_{c}^{2}+y_{c}^{2}\right]\right)\right\} \\
&\left.\left.=F\left(t_{b}, t_{c}\right) F\left(t_{c}, t_{a}\right) \frac{1}{\tan \left(\omega\left(t_{b}-t_{c}\right) / 2\right)}+\frac{i m \omega}{\tan \left(\omega\left(t_{c}-t_{a}\right) / 2\right)}\right)\left[x_{c}^{2}+y_{c}^{2}\right]\right\} \\
&-\frac{\pi}{4 \hbar}\left(\frac{1}{\tan \left(\omega\left(t_{b}-t_{c}\right) / 2\right)}+\frac{1}{\tan \left(\omega\left(t_{c}-t_{a}\right) / 2\right)}\right)
\end{aligned}
$$

Now adopt a notation inspired by Feynman's suggestion in problem 3-7, namely $t_{c}-t_{a}=s$ and $t_{b}-t_{c}=t$, and

$$
F(t)=\frac{m}{2 \pi i \hbar} g(t)
$$

This results in

$$
g(t+s)=\frac{g(t) g(s)}{\omega / 2}\left[\frac{\tan (\omega t / 2) \tan (\omega s / 2)}{\tan (\omega t / 2)+\tan (\omega s / 2)}\right] .
$$

Do you remember the sum formula for tangents? Neither do I, but I can look it up.

$$
\tan A+\tan B=\frac{\sin (A+B)}{\cos A \cos B}
$$

so

$$
g(t+s)=\frac{g(t) g(s)}{\omega / 2}\left[\frac{\sin (\omega t / 2) \sin (\omega s / 2)}{\sin (\omega(t+s) / 2)}\right]
$$

or

$$
g(t+s) \sin (\omega(t+s) / 2)=\frac{1}{\omega / 2}[g(t) \sin (\omega t / 2)][g(s) \sin (\omega s / 2)]
$$

It's obvious that one solution is

$$
g(t)=\frac{\omega / 2}{\sin (\omega t / 2)},
$$

and a little futzing around shows that this is the only physically relevant solution.
Throwing the pieces together,

$$
\begin{aligned}
K(b, a)= & \left(\frac{m}{2 \pi i \hbar T}\right)^{3 / 2}\left(\frac{\omega T / 2}{\sin (\omega T / 2)}\right) \exp \left\{\frac { i m } { 2 \hbar } \left[\frac{\left(z_{b}-z_{a}\right)^{2}}{T}\right.\right. \\
& \left.\left.+\left(\frac{\omega / 2}{\tan (\omega T / 2)}\right)\left[\left(x_{b}-x_{a}\right)^{2}+\left(y_{b}-y_{a}\right)^{2}\right]+\omega\left(x_{a} y_{b}-x_{b} y_{a}\right)\right]\right\}
\end{aligned}
$$

