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Solution to problem 3-10 in Quantum Mechanics and Path Integrals by Richard P. Feynman and Albert
R. Hibbs (McGraw-Hill, New York, 1965).

This solution breaks into three parts:

• Generalize the argument in section 3-5 to show that

K(b, a) = e(i/h̄)Scl[b,a]F (tb, ta).

• Find Scl[b, a]. This is a purely classical problem.

• Find F (tb, ta) by composition of paths trick, generalized from problem 3-7.

Kernel in terms of classical action. The lagrangian is

L =
m

2
[ẋ2 + ẏ2 + ż2 + ωxẏ − ωyẋ].

Following equation (3.47), we write the trajectory (x(t), y(t), z(t)) as a sum of the classical trajectory and a
deviation:

x(t) = x̄(t) + xD(t) y(t) = ȳ(t) + yD(t) z(t) = z̄(t) + zD(t).

The argument precisely follows the reasoning up to equation (3.49), which becomes

K(b, a) = e(i/h̄)Scl[b,a]

∫ 0

0

exp
{

i

h̄

m

2

∫ tb

ta

[ẋ2
D + ẏ2

D + ż2
D + ωxDẏD − ωyDẋD] dt

}
DxD(t)DyD(t) DzD(t).

The payoff here has been great: Not only do we find that the kernel is a product of e(i/h̄)Scl[b,a] times an
x-independent function F (tb, ta), but we also find that this function is precisely the kernel with the same
lagrangian but moving from the origin at time ta to the origin at time tb. In other words,

K(b, a) = e(i/h̄)Scl[b,a]F (tb, ta) = e(i/h̄)Scl[b,a]K(0, tb;0, ta).

Finding the classical action Scl. We can do this directly by finding the classical motion and then inte-
grating over time to find the action, but this theorem makes the problem considerably easier. (I know. I did
it directly before finding the theorem, and it’s a bear that way.)

Theorem: The classical action for this problem is

Scl =
m

2
[
xẋ + yẏ + ż2t

]tb

ta
.
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Proof: The classical force is
F =

e
c
v ×B

whence
(ẍ, ÿ, z̈) =

eB
mc

(ẏ,−ẋ, 0) = ω(ẏ,−ẋ, 0).

The classical action is defined by

Scl =
m

2

∫ tb

ta

[ẋ2 + ẏ2 + ż2 + ωxẏ − ωyẋ] dt.

Look at the first term using integration by parts:∫ tb

ta

ẋ2 dt = [xẋ]tb
ta
−

∫ tb

ta

xẍ dt

= [xẋ]tb
ta
−

∫ tb

ta

xωẏ dt

so ∫ tb

ta

[ẋ2 + ωxẏ] dt = [xẋ]tb
ta

.

A similar result holds for y, and the result for z is trivial. Minor clean-up produces the stated result.

The free translation in the z direction is easily taken care of and we don’t mention it in the following

The classical cyclotron orbit is of course the circular motion, of radius R and centered at (xC , yC),
sketched below:

(xC ,yC)
(xa ,ya)

(xb ,yb)

ωT/2

M

With a suitable time origin this circular motion has position coordinates

(x(t), y(t)) = (xC + R cos ωt, yC −R sinωt)

and thus velocity coordinates
(ẋ(t), ẏ(t)) = ω(−R sinωt,−R cos ωt).

So the position and velocity are related (for any time origin) through

ẋ(t) = ω(y(t)− yC) ẏ(t) = −ω(x(t)− xC).
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Applying our theorem, the classical action becomes

Scl =
mω

2
[x(y − yC)− y(x− xC)]tb

ta
=

mω

2
[−xyC + yxC ]tb

ta
=

mω

2
[−(xb − xa)yC + (yb − ya)xC ] .

Thus the only problem remaining is the purely geometrical one of finding the center point (xC , yC) in terms
of (xa, ya), (xb, yb) and time T . (This was, for me, the hardest part of the problem.)

The coordinates of point M are (
xb + xa

2
,
yb + ya

2

)
If the distance from point M to the center is dMC , then

tan(ωT/2) =
1
2

√
(xb − xa)2 + (yb − ya)2

dMC
.

Furthermore, the vector
(yb − ya,−(xb − xa))

is parallel to the vector from point M to the center. Putting these three items together, the coordinates of
the center point are

(xC , yC) =
(

xb + xa

2
,
yb + ya

2

)
+

1
tan(ωT/2)

(
yb − ya

2
,−xb − xa

2

)
.

Now, plugging these coordinates into our expression for Scl,

Scl =
mω

2
{−(xb − xa)yC + (yb − ya)xC}

=
mω

2

{
−(xb − xa)

[
yb + ya

2
− 1

tan(ωT/2)
xb − xa

2

]
+ (yb − ya)

[
xb + xa

2
+

1
tan(ωT/2)

yb − ya

2

]}
=

mω

2

{
1

2 tan(ωT/2)
[(xb − xa)2 + (yb − ya)2] + [xayb − xbya]

}
.

Thus the expression for the kernel is

K(b, a) = F (tb, ta) exp
{

i

h̄

m

2

(
(zb − za)2

T
+

ω/2
tan(ωT/2)

[(xb − xa)2 + (yb − ya)2] + ω[xayb − xbya]
)}

.

All that remains is to find the time-dependent prefactor F (tb, ta).

Finding the prefactor. The prefactor associated with the free motion in the z direction is the standard√
m

2πih̄T
,

so again we concentrate only on the x and y motion.

We realize that F (tb, ta) = K(0, tb;0, ta) and that for any time tc between ta and tb (see equation 2.31),

K(0, tb;0, ta) =
∫ +∞

−∞
dxc

∫ +∞

−∞
dyc K(0, tb;xc, yc, tc)K(xc, yc, tc;0, ta).
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But we have an explicit expression for K(xc, yc, tc;0, ta). Plugging this into the above equation results in

F (tb, ta) = F (tb, tc)F (tc, ta)
∫ +∞

−∞
dxc

∫ +∞

−∞
dyc exp

{
i

h̄

m

2

(
ω/2

tan(ω(tb − tc)/2)
[x2

c + y2
c ]

)}
exp

{
i

h̄

m

2

(
ω/2

tan(ω(tc − ta)/2)
[x2

c + y2
c ]

)}
= F (tb, tc)F (tc, ta)∫ +∞

−∞
dxc

∫ +∞

−∞
dyc exp

{
imω

4h̄

(
1

tan(ω(tb − tc)/2)
+

1
tan(ω(tc − ta)/2)

)
[x2

c + y2
c ]

}
= F (tb, tc)F (tc, ta)

π

− imω

4h̄

(
1

tan(ω(tb − tc)/2)
+

1
tan(ω(tc − ta)/2)

)
Now adopt a notation inspired by Feynman’s suggestion in problem 3-7, namely tc−ta = s and tb−tc = t,

and
F (t) =

m

2πih̄
g(t).

This results in
g(t + s) =

g(t)g(s)
ω/2

[
tan(ωt/2) tan(ωs/2)

tan(ωt/2) + tan(ωs/2)

]
.

Do you remember the sum formula for tangents? Neither do I, but I can look it up.

tanA + tanB =
sin(A + B)
cos A cos B

so
g(t + s) =

g(t)g(s)
ω/2

[
sin(ωt/2) sin(ωs/2)

sin(ω(t + s)/2)

]
or

g(t + s) sin(ω(t + s)/2) =
1

ω/2
[g(t) sin(ωt/2)][g(s) sin(ωs/2)].

It’s obvious that one solution is
g(t) =

ω/2
sin(ωt/2)

,

and a little futzing around shows that this is the only physically relevant solution.

Throwing the pieces together,

K(b, a) =
( m

2πih̄T

)3/2
(

ωT/2
sin(ωT/2)

)
exp

{
im

2h̄

[
(zb − za)2

T

+
(

ω/2
tan(ωT/2)

)
[(xb − xa)2 + (yb − ya)2] + ω(xayb − xbya)

]}
.
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