Atomic units

	conventional basic dimensions $($ mass, length, time)	unconventional basic dimensions (mass, length, energy $=\mathrm{ML}^{2} / \mathrm{T}^{2}$)
\hbar	$\left[\mathrm{ML}^{2} / \mathrm{T}\right]$	$\left[\mathrm{M}^{1 / 2} \mathrm{LE}^{1 / 2}\right]$
m	$[\mathrm{M}]$	$[\mathrm{M}]$
$e^{2} / 4 \pi \epsilon_{0}$	$\left[\mathrm{ML}^{3} / \mathrm{T}^{2}\right]$	$[\mathrm{LE}]$

a. Characteristic energy:

Using unconventional basic dimensions, first combine quantities \hbar and $e^{2} / 4 \pi \epsilon_{0}$ to get rid of [L]. (This is the only way to cancel out the $[\mathrm{L}] \mathrm{s}$.) This division results in

$$
\text { quantity } \frac{\hbar}{e^{2} / 4 \pi \epsilon_{0}} \text { with dimensions }\left[\mathrm{M}^{1 / 2} / \mathrm{E}^{1 / 2}\right]
$$

Square both sides to get

$$
\text { quantity } \frac{\hbar^{2}}{\left(e^{2} / 4 \pi \epsilon_{0}\right)^{2}} \text { with dimensions }[\mathrm{M} / \mathrm{E}]
$$

Invert and multiply by m (the only way to get rid of the $[\mathrm{M}] \mathrm{s}$) to find the only characteristic energy,

$$
\text { quantity } \frac{m\left(e^{2} / 4 \pi \epsilon_{0}\right)^{2}}{\hbar^{2}} \text { with dimensions }[\mathrm{E}]
$$

This energy is equal to two Rydberg units (2 Ry).
b. Characteristic time:

Using conventional basic dimensions, first combine quantities \hbar and $e^{2} / 4 \pi \epsilon_{0}$ to get rid of [L]:

$$
\text { quantity } \frac{\hbar^{3}}{\left(e^{2} / 4 \pi \epsilon_{0}\right)^{2}} \text { with dimensions } \frac{\left[\mathrm{M}^{3} \mathrm{~L}^{6} / \mathrm{T}^{3}\right]}{\left[\mathrm{M}^{2} \mathrm{~L}^{6} / \mathrm{T}^{4}\right]}=[\mathrm{MT}]
$$

Divide by m to get the only quantity with the dimensions of time:

$$
\frac{\hbar^{3}}{m\left(e^{2} / 4 \pi \epsilon_{0}\right)^{2}} \equiv \tau_{0}
$$

I remember this as

$$
\tau_{0}=\frac{\hbar}{2 \mathrm{Ry}}=2.4 \times 10^{-17} \mathrm{sec}=0.024 \mathrm{fsec}
$$

c. Bonus - Bohr model:

For classical circular orbits,

$$
\frac{m v^{2}}{r}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r^{2}}
$$

To this Bohr adds the quantization condition for angular momentum, namely that for the nth Bohr orbit,

$$
n \hbar=m v_{n} r_{n}
$$

Thus the radius of the nth Bohr orbit comes through
or

$$
\frac{m}{r_{n}} v_{n}^{2}=\frac{m}{r_{n}}\left(\frac{n \hbar}{m r_{n}}\right)^{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r_{n}^{2}}
$$

$$
\frac{n^{2} \hbar^{2}}{m r_{n}}=e^{2} / 4 \pi \epsilon_{0}
$$

whence

$$
r_{n}=n^{2} \frac{\hbar^{2}}{m\left(e^{2} / 4 \pi \epsilon_{0}\right)} \equiv n^{2} a_{0}
$$

Then the period of the nth Bohr orbit is

$$
\begin{aligned}
\text { period }_{n} & =\frac{\text { circumference }_{n}}{v_{n}} \\
& =\frac{2 \pi r_{n}}{n \hbar / m r_{n}} \\
& =\frac{2 \pi m r_{n}^{2}}{n \hbar} \\
& =\frac{2 \pi m n^{4} a_{0}^{2}}{n \hbar} \\
& =n^{3} \frac{2 \pi m a_{0}^{2}}{\hbar} \\
& =2 \pi n^{3} \frac{m}{\hbar} \frac{\hbar^{4}}{m^{2}\left(e^{2} / 4 \pi \epsilon_{0}\right)^{2}} \\
& =2 \pi n^{3} \frac{\hbar^{3}}{m\left(e^{2} / 4 \pi \epsilon_{0}\right)^{2}} \\
& =2 \pi n^{3} \tau_{0}
\end{aligned}
$$

d. Heartbeats to orbits:

The average person lives about 80 years. The average heartbeat lasts about one second. The number of seconds in a year is surprisingly close to $\pi \times 10^{7}$. Thus the average heart beats about 3×10^{9} times. (This three billion beats represents spectacular performance: the fuel pump in a car can't do nearly as well.)

How long does it take an innermost electron to execute one Bohr orbit?
The orbital time is $2 \pi \tau_{0}$ or about $1.5 \times 10^{-16} \mathrm{sec}$.
How long does it take this electron to execute three billion orbits (a "lifetime's worth")?
About 5×10^{-7} sec.
So how many "atom lifetimes" pass in one second?
About $1 /\left(5 \times 10^{-7}\right)$ or two million.
e. The time-dependent Schrödinger equation in scaled variables:

For any function $f(x)$ we have

$$
\begin{aligned}
\frac{\partial f(x)}{\partial x} & =\frac{\partial f(\tilde{x})}{\partial \tilde{x}} \frac{\partial \tilde{x}}{\partial x}=\frac{\partial f(\tilde{x})}{\partial \tilde{x}} \frac{1}{a_{0}} \\
\frac{\partial^{2} f(x)}{\partial x^{2}} & =\frac{\partial}{\partial \tilde{x}}\left[\frac{\partial f(\tilde{x})}{\partial \tilde{x}} \frac{1}{a_{0}}\right] \frac{\partial \tilde{x}}{\partial x}=\frac{\partial^{2} f(\tilde{x})}{\partial \tilde{x}^{2}} \frac{1}{a_{0}^{2}}
\end{aligned}
$$

Apply this to the time-dependent Schrödinger equation:

$$
\begin{aligned}
i \hbar \frac{\partial \Psi}{\partial t} & =-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r} \Psi \\
i \hbar \frac{1}{\tau_{0}} \frac{\partial \Psi}{\partial \tilde{t}} & =-\frac{\hbar^{2}}{2 m} \frac{1}{a_{0}^{2}} \widetilde{\nabla}^{2} \Psi-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{a_{0} \tilde{r}} \Psi \\
i \frac{\partial \Psi}{\partial \tilde{t}} & =-\frac{1}{2}\left[\frac{\hbar}{m} \frac{\tau_{0}}{a_{0}^{2}}\right] \widetilde{\nabla}^{2} \Psi-\left[\frac{\tau_{0}}{\hbar} \frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{a_{0}}\right] \frac{1}{\tilde{r}} \Psi .
\end{aligned}
$$

However, quick perusal of the definitions of a_{0} and τ_{0} will convince you that both of the expressions in square brackets are equal to 1! Thus

$$
i \frac{\partial \Psi}{\partial \tilde{t}}=-\frac{1}{2} \widetilde{\nabla}^{2} \Psi-\frac{1}{\tilde{r}} \Psi
$$

Multiply both sides by $a_{0}^{3 / 2}$, because $\widetilde{\Psi}=a_{0}^{3 / 2} \Psi$, to get

$$
i \frac{\partial \widetilde{\Psi}}{\partial \tilde{t}}=-\frac{1}{2} \widetilde{\nabla}^{2} \widetilde{\Psi}-\frac{1}{\tilde{r}} \widetilde{\Psi}
$$

Grading:
2 points for part a
2 points for part b
2 points extra for part c
3 points for part d
3 points for part \mathbf{e}

