The Parametric Frobenius Problem™

Bjarke Hammersholt Roune! Kevin Woods
Department of Mathematics Department of Mathematics
University of Kaiserslautern Oberlin College

Kaiserslautern, Germany Oberlin, Ohio, USA
bjarke.roune@gmail.com Kevin.Woods@oberlin.edu

Mathematics Subject Classifications: 11D07, 52C07, 11H06

Abstract

Given relatively prime positive integers a1, ..., a,, the Frobenius number is the
largest integer that cannot be written as a nonnegative integer combination of the
a;. We examine the parametric version of this problem: given a; = a;(t) as functions
of t, compute the Frobenius number as a function of ¢. A function f :Z, — Z is
a quasi-polynomial if there exists a period m and polynomials fo,..., fi,—1 such
that f(t) = fi moa m(t) for all t. We conjecture that, if the a;(¢) are polynomials (or
quasi-polynomials) in ¢, then the Frobenius number agrees with a quasi-polynomial,
for sufficiently large t. We prove this in the case where the a;(¢) are linear functions,
and also prove it in the case where n (the number of generators) is at most 3.

1 Introduction

Given positive integers a;, 1 <7 < n, let

<a1’ S >an> = {Zpiai

i=1

Di € Z;o}

be the semigroup generated by the a;. If the a; are relatively prime, define the Frobenius
number F(ay,...,a,) to be the largest integer not in (ay,...,a,). The Frobenius prob-
lem of determining F(ay,...,a,) has a long history — Sylvester proved [8] in 1884 that
F(a,b) = ab— a — b, and see Ramirez Alfonsin’s book [5] for many subsequent results.
It will be convenient to also define F(ay,...,a,) in the case where the a; are not
relatively prime, so that there is no largest integer not in the semigroup. A reasonable
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definition seems to be the largest integer in the group Za, + - - - + Za,, that is not in the
semigroup (ai,...,a,). That is, if d is the greatest common divisor of ai,...,a,, then
F(ay,...,a,) = dF(%,...,%). Sylvester’s identity then becomes F(a,b) = lem(a,b) —
a—b.

The parametric Frobenius problem is, given functions a; : Z, — 7Z, to determine
F(al(t), . ,an(t)) as a function of ¢t. For example, using Sylvester’s identity,

tt+2)—t—(t+2) iftisodd,

F(t,t+2) =
( ) {t(t;i) —t—(t+2) if ¢ is even.

We see that F(t,t + 2) is a quasi-polynomial; a function f : Z, — Z is a quasi-
polynomial if there exist an m € Z, and polynomials fy,..., frn-1 € Q[t] such that
f(t) = fimoam(t) for all t € Z,. Here m is a period of f and the f; are components of f.
We will assume that all of our functions are integer-valued, but note that the F'(t,¢ + 2)
example shows that we may need polynomials with rational coefficients.

In general, our functions may misbehave for small t. We say that a property is even-
tually true if it is true for all sufficiently large t. We say that f(¢) € EQP (short for
eventual quasi-polynomial) if f(t) eventually agrees with a quasi-polynomial. We say
that the degree of f € EQP is the maximum degree of its components.

We conjecture that, if a;(t) € EQP, then F(ai(t),...,a,(t)) € EQP. We prove this
for the special case where the a;(t) are linear functions and for the special case where
n < 3.

Conjecture 1.1. Suppose that a;(t) € EQP, 1 < i < n, are eventually positive. Then
F(ai(t),...,an(t)) € EQP.

Theorem 1.2. Suppose that a;(t) € EQP, 1 < i < n, are eventually positive and have
degree at most 1. Then F(ai(t),...,an(t)) € EQP, with degree at most 2.

Theorem 1.3. Suppose that a;(t) € EQP, 1 < i < n, are eventually positive, with n < 3.
Then F(ai(t),. .., a,(t)) € EQP.

These results are examples of so-called “unreasonable” appearances of quasi-polyno-
mials, as discussed by Woods [10]. “Reasonable” appearances trace back to Ehrhart’s
classical result [3] that, if P C R"™ is a polytope with rational vertices, then f(t) =
#(tP N Z") is a quasi-polynomial. Note that if P is defined with linear inequalities
b; - x < ¢;, then tP is defined with linear inequalities b; - x < ¢;t. As t changes, these
linear inequalities move, but their normal vectors (b;) remain the same. Indeed, Woods
proved [11] that any example over the integers defined with linear inequalities, boolean
operations (and, or, not), and quantifiers (V, 3) has this quasi-polynomial behavior. This
is true even if there is more than one parameter; for example,

#{(x,y)ezio\%ét,?»yés}:(EjtlJ)(EﬁulD

is a quasi-polynomial of period 2 in ¢ and period 3 in s.
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If we look at the parametric Frobenius problem, however, we see that it does not fit
this pattern. For example, if we want to ask whether v € (t,t 4+ 1,t 4+ 2), we are asking
whether the polytope

{(2,y,2) € RS [u = ta + (¢ + Ly + (¢ +2)}

contains any integer points. For a fixed ¢, this is a 2-dimensional triangle in R3; as ¢
changes, this triangle “twists” (the normal vector changes). Examples such as this were
categorized in [10] as “unreasonable”, though they are conjectured to still lead to eventual
quasi-polynomial behavior.

This paper adds a third example to the list of recent results demonstrating this phe-
nomenon; previously Chen, Li, and Sam [2] showed that the number of integer points in a
polytope whose vertices are rational functions of ¢ is in EQP, and Calegari and Walker [1]
showed that the vertices of the integer hull of such a polytope have coordinates in EQP.
A critical tool used in all of these results is that the division algorithm and the ged of
polynomials has quasi-polynomial behavior (cf. Lemma 3.1); for example, the Euclidean
algorithm yields

7 ift=3mod?7,

ged(2t + 1,5t +6) = ged(t + 4,2t + 1) = ged(7,t +4) = ‘
1 otherwise.

Note that unlike in the “reasonable” case, these results only hold with one parameter
variable. For example F'(s,t) = lcm(s,t) — s — ¢ is not a quasi-polynomial in s and ¢.

The original inspiration for this paper comes from a conjecture of Wagon [9] (see [4,
Section 17]) that, for any fixed M and residue class j of t mod M?, there exist (usually
positive) integers cpr; and dyy; such that eventually

1
F(t,t+12,t+22,...,t+M2) = W(tz—i‘CM,jt) _dM,j'

Using the proof of Theorem 1.2, we can prove that there is indeed quasi-polynomial
behavior with period M?2. In fact, such a result holds in greater generality:

Corollary 1.4. Suppose by < by < by < --+ < b, are integers. Then F(t+by,t+by, ... t+
b,) € EQP with period b, — b.

When the b; form an arithmetic sequence, a precise quasi-polynomial formula was
previously given by Roberts [6]:

F(t,t+d,...,t+sd) = Q%J +1)t+(d—1)(t—1)—1.

In Section 2, we work through the example

t—2 £ if t even
Ft,t+1,t+2)=(|—|+1)t—-1=<S3 ’
< = (|52 {E L, e

2 2
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which will give a flavor of our general proof. In Section 3, we prove Theorem 1.2. In
Section 4, we prove the various lemmas needed. In Section 5, we prove Corollary 1.4.
In Section 6, we prove Theorem 1.3, using Rgdseth’s algorithm [7] for the 3 generator
Frobenius problem.

The proof of Theorem 1.2 relies on the fact that semigroups with only two generators
are much easier to deal with. Indeed, we have the following definition and lemma:

Definition 1.5. Let a,b € Z, be relatively prime, and let ¢ € Z. The canonical form for
¢ is given by ¢ = pa + qb with p,q € Z and 0 < p < b.

Lemma 1.6. Let a,b € Z, be relatively prime, and let c € Z.

1. The canonical form for ¢ exists and is unique. In particular, if ¢ = p'a + ¢'b is
any form with p',q € Z, and if k and r are the quotient and remainder when p’ is
divided by b, then the canonical form for ¢ is ra + (¢’ + ka)b.

2. If c = pa + qb is in canonical form, ¢ € (a,b) if and only if ¢ > 0.

2 An Example

In this example, we compute F(¢t,t 4+ 1,t +2). Let a=t, b=1t+1, and ¢ =t + 2 be our
three generators, let S = (a,b,¢), and let T = (a, c). Notice that 2b = a + ¢. This implies
that S =T U (b+ T), as follows: if pa + gb + rc is a representation of an element of S,
with p,q,7 € Z>o and ¢ > 2, then (p + 1)a + (¢ — 2)b+ (r + 1)c is also a representation,
so we may assume without loss of generality that ¢ is 0 or 1 (cf. Lemma 3.4). Next, we
run the extended Euclidean algorithm on the integers a and ¢, and get

ged(a, ) = ged(t, t + 2) = ged(2, 1)

(cf. Lemma 3.1). The next division step in the algorithm depends on the parity of ¢, and
rather than end up with the messy |¢/2], we divide into two cases.

The case t is odd: Let t =2s+ 1, so that a =2s+ 1, b = 2s+ 2, and ¢ = 25 + 3.
Now
ged(a, ) = ged(2,2s + 1) = ged(1,2) =1,

and the extended Euclidean algorithm yields 1 = (s + 1)a — sc. Let u € Z, and we are
wondering whether u ¢ S, that is, u ¢ T and u ¢ b+ T. Suppose that

U = pa + qc

is the canonical form for u (see Definition 1.5). Lemma 1.6(2) tells us that u € T" if and
only if ¢ > 0. Since we are looking for u ¢ T, we may assume from here on out that
g < 0. To characterize when u € b+ T (that is, u — b € T') we must find the canonical
form for u — b.



First we compute the canonical form for b. Multiplying the equation 1 = (s+ 1)a — sc
by b = 2s + 2 yields some form for b:

b=(2s+2)(s+ 1)a — (25 + 2)sc.

By Lemma 1.6(1), we may find the canonical form by dividing (2s42)(s+1) by ¢ = 25+ 3:
the quotient is s with remainder s + 2, giving the canonical form for b as

b= (s+2)a— sc.

Note that we got a little lucky here: our remainder of s+ 2 is clearly less than ¢ = 2s + 3;
if our remainder had instead been s+ 7, say, then we would only have the canonical form
for sufficiently large s.

Now we have that some form for u — b is

u—b=(p—s—2)a+ (q+s)c.

Is this the canonical form? There are two cases:

Ifp>s+2,then 0 <p—s—2<p<c and this is in canonical form. Therefore, to
have u — b € T, we must have ¢ + s > 0 (again using Lemma 1.6(2)), that is, ¢ > —s.

If p < s+ 2, then the canonical form is

u—b=((p—s—2+cla+(qg+s—a)c={p+s+1a+(g—s—1)c

(to check that this is canonical, note that p > 0 and s +2 < ¢ imply p —s — 2+ ¢ > 0,
and p < s+ 2 implies p — s — 2+ ¢ < ¢). In this case, to have v — b € T', we must have
q = s+ 1. This implies that ¢ > 0, but we have assumed ¢ < 0 (so that u ¢ T'). Therefore
this case never has u — b € T.

To summarize across both cases, if u = pa + qc, with 0 < p < ¢ = 25 + 3 in the
canonical form, then u ¢ S if and only if

not(g > 0) and mnot((p,q) = (s+2,—s))

(cf. Lemma 3.5). The set of such (p, q) has a “stairstep” shape, as can be seen in Figure
1 for t = 5. In particular, the set of such (p, ¢) can be rewritten as p > 0 and

(p<s+1 and qé—l) or (p<23+2 and q<—s—1)

(cf. proof of Lemma 3.6, d = 1 case). The two “corners” in this picture, where both
inequalities of one of these two conjunctions are tight, give our candidates for the largest
u ¢ S: it must be either

(s+Da—1lc=2s"+s—-2 or (2s+2)a+(—s—1)c=2s"+s—1.

The latter is always larger (in general, one might only be eventually larger than the other),

and so we have )
t t
F(t7t+]—7t+2):232+3_1:5—5_17



Figure 1: The ¢t = 5 case of the example. We have T'= (5,7) and S = (5,6,7) = TU(6+T).
Points (p,q) € Z? with 0 < p < 7 are the canonical forms for u = 5p + 7q € Z. Then
q = 0 corresponds to u € T, (p,q) = (4,—2) corresponds to u € 6 + T, and positive u
such that u ¢ S are labelled beside their corresponding (p, q). The “corners” v = 8 and
u = 9 are candidates for the Frobenius number, and so F(5,6,7) = max{8,9} = 9.

in this case where t = 2s + 1 is odd.

The case t is even: Let t = 2s, so that a = 2s, b = 2s+ 1, and ¢ = 2s + 2. To
have u ¢ S we must have both u ¢ T' = (a,c) and u ¢ b+ T. Note that every element
in T is even and every element of b + T is odd. Therefore the largest even integer not
in S is the largest even integer not in 7', which since T' has only 2 generators is simply
lem(a,c) —a — ¢ = 25* — 25 — 2 (we're getting lucky here that we didn’t have to do an
analysis similar to the ¢ is odd case). Similarly the largest odd integer not in S is the
largest odd integer not in b+T, which is b+ (25> —2s5—2) = 2s? —1. The largest integer not
in S is then the maximum of these two candidates, so F(t,t + 1,t +2) =2s*> —1 = % —
(cf. proof of Lemma 3.6, d > 1 case), in this case where t is even.

Combining the even and odd case, we have proved that

t2 ;

L if ¢ even
F(t,t+1,t+2)={fz . . ’

3 T 9 lftOdd

3 Proof of Theorem 1.2
This first lemma gives us the basic tools we need:
Lemma 3.1. Gwen f,g € EQP,

1. There exists an m € Zy such that, for each 0 < j <m, f(ms+ j) eventually agrees
with a polynomial in 7Z[s].



2. If deg(g) > 0, there exists q,r € EQP such that f(t) = q(t)g(t) +r(t) and deg(r) <
deg(g). Note that this is the analogue of the traditional division algorithm over Q[t].

3. If g(t) is eventually positive, there ezists q,r € EQP such that f(t) = q(t)g(t) +r(t)
and eventually 0 < r(t) < g(t). Furthermore, deg(r) < deg(g). Note that this is the
analogue of the traditional division algorithm over Z.

4. There exists p,q,d € EQP such that ged (f(t),9(t)) = d(t) and d(t) = p(t)f(t) +
q(t)g(t).

5. We have max (f(t), g(t)) € EQP.

These are proved in Section 4 of [2] (and also in [1]), so in Section 4 we merely give
an outline of the important steps.

Remark 3.2. Lemma 3.1(1) will allow us to often simply say “without loss of generality,
f € Z[t]”: we may analyze f(ms + j) for each j, recognize that statements may be false
for small s, and then convert back to t using s = (t — j)/m.

Using this remark, we may assume that the a;(t) are polynomials in Z[t]. Since they
are of degree at most 1 and eventually positive, we have that

a;(t) = ait + By,

with either o; € Z,, B; € Z or a; = 0, §; € Z,. Furthermore, without loss of generality,
we may assume that they are ordered so that

Biay < B
for i < j, that is (for a; # 0),
61 62 677,

e = G gLy
a7 ) (079

We first consider a degenerate case, where f;o; = 3, for all 4, j.

Lemma 3.3. If B;a; = Bjay, for all i, j, then there are ay, By € Z=o such that, for all i,
a; = viag and i = B (for some ~y; € Z. ). Therefore

F(al(t)a s 7an(t)) = F(/yh oo 7771) : (O[()t + 60)
1s a polynomial of degree at most 1.

Therefore, we can assume that f1a,, < f,a7. In particular, the polynomials a; and
a, do not share a linear factor, and so if d(t) = ged (a1(t), a,(t)), then d(t) € EQP is
of degree 0, that is, d(t) is eventually a periodic function. Let S(t) = (ai(¢),...,a,(t)),
and let T'(t) = (a1(t), a,(t)). T(t) is a semigroup with only two generators, so it is much
easier to analyze. The following lemma allows us to cover S(t) with a finite number of
translated copies of T'().



Lemma 3.4. For a;(t) = a;t+ 5; as described above, there exists a finite set H of integer-
valued polynomials of degree at most 1 such that

(@r(®), . an(®) = [ (1) + (2(0), an(0)) )

heH

(for t sufficiently large so that a;(t) > 0,¥i). Furthermore, 0 € H and the other h € H
are eventually positive.

Assume for the moment that a;(t) and a,(t) are relatively prime. By Lemma 1.6(2),
the set of all integers not in T" will be in bijection to the set

{(p.q) €Z*|0< p <ay(t), g <0},

under the bijection (p, q) — pa;(t) + ga,(t). By Lemma 3.4, integers not in S must also
not be in h(t) + T, for all h € H. The following lemma gives an easy way to check this.

Lemma 3.5. Let f,g,h € EQP, with f(t) and g(t) relatively prime for all t and with
f(t),q(t), h(t) eventually positive. There exists r,s € EQP such that, given p,q € Z with
0<p<y(t) and g <0,

pf(t) +ag(t) € h(t) + (f(),g(t)) if and only if (p.q) = (r(t),s(t))

component-wise. Furthermore, deg(r) < deg(g) and deg(s) < max{deg(f),deg(h) —
deg(g)},

In our case, this gives r, s of degree at most 1. If a;(¢) and a,(t) are relatively prime, all
that remains is to follow the implications of Lemmas 3.4 and Lemma 3.5, which will give
us a staircase-shaped set such as in Figure 1. If a;(¢) and a,(t) are not relatively prime, we
must reduce to the case where they are. Both of these are accomplished in the following
lemma, which (combined with Lemma 3.4 and the fact that d(¢) = ged (f(¢), g(t)) is of
degree 0) proves our theorem.

Lemma 3.6. Let f(t),g(t) € EQP, and let d(t) = ged (f(t),g(t)) be of degree 0, let
H C EQP be a finite set, and let

heH

The function F(t) giving the largest integer not in S(t) is in EQP, with degree at most
max{deg(f) + des(g), deg(h)}.

In our case, this gives that F'is of degree at most 2.



4 Proofs of Lemmas

Proof of Lemma 1.6. Part 1 is a standard result, using the extended Euclidean algorithm
and the fact that if ¢ = p’a 4+ ¢’b is one solution, then all solutions are given by ¢ =
(p' — kb)a+ (¢’ + ka)b for k € Z.

For part 2, we have ¢ = pa+ ¢gb with 0 < p < b. The reverse implication is immediate:
if ¢ > 0, then we have written ¢ = pa + qb with p,q € Z-q, proving that ¢ € (a,b).
Conversely, suppose ¢ € (a,b) so that ¢ = p'a + ¢'b with p/, ¢’ € Z~o. By part 1, if k£ and
r are the quotient and remainder when p’ is divided by b, then

c=ra+ (¢ + ka)b
is the canonical form for ¢, with ¢ = ¢ + ka > 0. n

Proof of Lemma 3.1. As these are proved in Section 4 of [2], we simply give an outline
here.

For part 1, this is mostly obvious: simply take component polynomials of the quasi-
polynomial. The main subtlety, as seen in the example from Section 2, is that integer-
valued polynomials may have non-integral coefficients. In this case, let m be the least
common multiple of the denominators of the coefficients. Examining f(ms + i), we see
that all coefficients of s* must be integral, except possibly the constant coefficient; since
the function is integer-valued, the constant coefficient must also be integral.

For part 2, simply perform polynomial division. The main subtlety is the following:
Suppose, for example, that f(t) = t* + 3t and g(t) = 2t + 1. Then the leading coefficient
of g does not divide the leading coefficient of f, and the traditional polynomial division
algorithm would produce quotients that are not integer-valued. Instead, we look sepa-
rately at each residue class of ¢ modulo the leading coefficient of g; for example, if ¢ is
odd, then t = 2s + 1 for some s € Z=, so substituting gives f(2s + 1) = 45> + 10s + 3
and g(2s + 1) = 4s + 3, and now the leading term does divide evenly.

For part 3, first perform the polynomial division algorithm for part 2. For example,
suppose f(t) =2t — 3 and ¢g(t) = t, yielding f = 2g + —3. For part 3, however, we want
the integer division algorithm: f(t) = 1¢(t)+ (¢t —3), and the remainder ¢ — 3 is between 0
and g as long as t > 3. In other words, if we have found f = ¢’g+r" with deg(r’) < deg(g),
but we eventually have 77/(¢) < 0, then we should use quotient ¢ = ¢’ — 1 and remainder
r = g+ 1’ instead, as eventually 0 < g(t) +7'(t) < g(¢t).

For part 4, run the extended Euclidean algorithm, repeatedly performing the division
algorithm of part 2.

For part 5, note that given two polynomials, one eventually dominates the other. [

Proof of Lemma 3.3. For each i, let v; = ged(au, 8;) € Z4, let o = «;/7;, and let B =
Bi/7i, with o and j; relatively prime. Dividing Bio; = B by 7i; yields fio; = Bja.
Since o divides 3ja; and is relatively prime to (3}, we have that o divides a;. Similarly,
a; divides o, and so ; = . Similarly, 3] = 3;. Taking ag to be the common «; (equal

for all ) and By to be the common !, the proof follows. H



Proof of Lemma 3.4. Letr = 8,00 —B1a,,. We are given that r > 0 and that 3o, — B0 >
0 for all + < j. Let

H = {)\2@2 —+ -4 )\n_lan_l | )\Z € Z;O, )‘z < ’I"} .

We will prove that H has the required properties; certainly every element of H is of degree
at most 1. We must show that, if u € (a,(t),...,a,(t)), then there exists a A € ZZ, such
that u = Aay(t) + -+ + Apan(t) and \; <rfor2<i<n—1.

By definition of the semigroup, there exists a A € Z% such that u = A\a(t) +--- +
Anan(t). Suppose that A; > r for some i with 2 < i < n— 1. Let p = B, — P, and
q = B;aq — PB1a; and observe that p,q > 0. Then

pai(t) + qan(t) = (Buai — Bicy,)(cut + B1) + (Bicn — Brai)(ant + Br)
= Brazant — Biag 1 + Bion B — Brovant
= (Bna1 — Bray) (it + 5)
= ra;(t).

Now define X' by A} = Ay +p, Xl = A\ =7, A, = Ay + ¢, and A} = ); for all other j. Then
w=Nai(t)+ -+ N,a,(t)

is a new representation of u. Repeating this process eventually yields a representation
with \; <rfor2<i<n—1. O]

Proof of Lemma 3.5. Assume 0 < p < ¢(t) and ¢ < 0. We need conditions on p, q for
which pf(t) 4+ qg(t) — h(t) € (f(t),g(t)). By Lemma 3.1(4) and the fact that f(t) and
g(t) are relatively prime, we may write 1 = 7/(¢)f(t) + s'(t)g(t), where 1/, s € EQP.
Multiplying this equation by h(t) yields

h(t) = (h(t)r' () £ () + (R()s' (1)) 9(2).

If we let k(t) and r(t) be the quotient and remainder when h(t)r'(t) is divided by g¢(t),
using Lemma 3.1(3), and let s(t) = h(t)s'(t) + k(t) f(¢), then we have

h(t) = r(t)f(t) + s(t)g(t),

with 0 < r(t) < g(t). In particular, this gives us that deg(r) < deg(g) and therefore
deg(s) < max{deg(f),deg(h) — deg(g)}. We have

pf(t) +ag(t) = h(t) = (p— (1) f(t) + (¢ — s(1))g(2). (1)
The case p > r(t): Then 0 < p —r(t) < g(t), and (1) is in canonical form. Then

pf(t) +qg(t) — h(t) € (f(t),g(t)) if and only if ¢ — s(t) > 0, by Lemma 1.6(2).
The case p < r(t): Then the canonical form for pf(t) + qg(t) — h(t) will be

(p— () +9(t) f(t) + (¢ — s(t) — £(1))g(1), (2)
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since 0 < p < r(t) and r(t) < g(t) imply that

0<p—r(t)+g(t) <gt)

Since h(t), r(t), f(t), and g(t) are eventually positive and r(t) < g(t), we eventually have
0 < h(t) =r(t)f(t) +s(t)g(t) < gt)(f(t) + (1)),

and so eventually f(t)+ s(t) > 0. Since we are assuming that ¢ < 0, eventually ¢ — s(t) —
f(t) < 0. Therefore the canonical form (2) shows that pf(t) + qg(t) — h(t) & (f(t),g(t)),
by Lemma 1.6(2).

Combining the two cases, we see that pf(t) +qg(t) € h(t) + (f(t), g(t)) exactly when
p > r(t) and g > s(t), as desired. O

Proof of Lemma 3.6. Since d(t) € EQP is of degree zero, it is eventually a periodic func-
tion. By Remark 3.2, we may focus on a component of d(t) and assume that d(t) = d is
a constant.

The case d = 1: We assume, without loss of generality, that 0 € H and the other
functions in H are eventually positive: if not, let ho(¢) be the eventually minimal polyno-
mial in H, and find the largest integer F’(t) not in

510 = U (00 = 1a(0) + 70,9000 )
heH
then F'(t) = F'(t) + ho(t).

We wish to describe the set U(t) of (p, ¢) corresponding to canonical forms u = pf(t)+
qg(t) such that v ¢ S. Canonical implies that 0 < p < g(¢t), and u ¢ (0 + (f(t), g(t)))
implies that ¢ < 0, by Lemma 1.6(2). Each h € H \ {0} gives the condition “p <
rp(t) or ¢ < sp(t)”, by Lemma 3.5. Then the set U(t) has a “stairstep” shape as in
Figure 1. To be precise, order the (r4(t),s,(t)) such that ri(t) < ra(t) < --- < rp(t)
(eventually). Notice that if r;(t) < r;(t), then we may assume without loss of generality
that s;(t) > s;(t) (eventually), or else the condition “p < 7;(t) or ¢ < s;(t)” would be
redundant. Further include (ro(t), so(t)) = (0,0) (corresponding to u ¢ 0+ (f(t), g(t)))
and (7pt1(t), Smr1(t)) = (g(t), —f(¢)) (corresponding to (p, q) being canonical). Finally,
for 0 < i <m, let (ay(t), Bi(t)) = (ris1(t) — 1, 5(¢) — 1). Then the set of (p,q) € U(t) is
exactly the set such that 0 < p and
Bo

(s q) < (ao(t),Bo(t)) or - or (p,q) < (m(t), Bm(t))-

Since if (p,q) < (a;(t), B;(t)), then pf(t) + qg(t) < au(t)f(t) + Bi(t)g(t), our candidates
for the largest integer not in S(t) are the a;(t) f(¢) + Bi(t)g(t), 0 < i < m. Then our final

answer is

max «;(t)f(t) + Bi(t)g(t),

0o<i<m
which is in EQP, by Lemma 3.1(5). Furthermore, using that deg(a;) = deg(r;) < deg(g)
and deg(f;) = deg(s;) < max{deg(f),deg(h)— deg(g)}, by Lemma 3.5, we have that our
final degree is at most max{deg(f) + deg(g),deg(h)}.
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The case d > 1: Let H;(t) = {h€ H|h(t) =jmodd}. The remainder when a
given h(t) is divided by d is a periodic function, by Lemma 3.1(3); applying Remark 3.2
as necessary, we may assume that these remainders are constant, that is, that H; = H,(¢)
does not depend on t. Let S;(t) = {u € S(t) | u = j mod d}. Since d divides every element

of (7). 9(1)),
s, = (h(t) ), 9(0) )

heH;

Let Fj(t) be the largest integer not in

%Z(Sj(t)_j): ¥ <h(t)d—j+<f5lt)7ggf)>>.

hEHj

By the case d = 1 proved above, Fj(t) is in EQP. Since dFj(t) + j is the maximum
u € j+dZ such that u ¢ S;(t), we get that F(t) = max; (dFj(t) + j). Lemma 3.1(5) then
implies that F'(¢) is in EQP. O

5 Proof of Corollary 1.4

Without loss of generality, we may assume that by = 0 (substituting s = ¢ — by, if
necessary). For a fixed j € Z, look at all ¢ = j mod b, and let s be such that ¢t = b,s + j.
Let a;(s) =t +b; = bys + j + b;. We must prove that F(a;(s),...,a,(s)) is a polynomial
in s. We follow the proof of Theorem 1.2 and of the lemmas, looking for places where
periodicity might be introduced. Note that the a;(s) are correctly ordered (as defined
before the statement of Lemma 3.3) so that Lemma 3.4 gives us

S=J (h(s) + {a(s), an(s)) ).

heH

Following the proof of Lemma 3.4, note that each h € H is a nonnegative integer
combination of ay(s),...,a,—1(s). In particular, each h € H has the form kb,s + ¢ for
some integers k and /.

Focus on a specific h = kb,s + {. Let

d(s) = ged (a1(s), an(s)) = ged(bps + 4, bps + 7 + by) = ged(by, bys + 7) = ged (4, by),
which is a constant. Finding p and ¢ with pj + ¢b,, = d gives us
d = (ps —q+plai(s) — (ps — q)an(s).

Assume for the moment that d = 1. We next examine the proof of Lemma 3.5. The first
step is to take

h=h-1=h-((ps—q+plai(s) — (ps — @)an(s))
= ((kbns + f)(ps —q +p))a1(s) - ((kbns + 6)(273 —q +p)>an<5)a
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and write it in canonical form. This involves taking the remainder when dividing
(kbps + £)(ps — q + p) = kpbps® + (€p — kb,q + kb,p)s + (—Lq + (p)

by a,(s) = bys + j + b,. The first step of polynomial long division works over the
integers, because the leading coefficient, b, of a,(s) divides into the leading coefficient,
kpb,,, of the dividend. This leaves a remainder that is linear in s. One more step of long
division (dividing a linear in s function by a linear in s function and taking the linear in
s remainder) will then lead to the final answer, without introducing extra periodicity.

No other steps in the entire proof have a possibility of adding periodicity, so we are
done, in the case d = 1.

If d > 1, following the proof of Lemma 3.6 in the d > 1 case, let b/, = b, /d, j = j/d,
and ¢/ = |/¢/d] be integers. Then the reduction to the d = 1 case gives that we must
examine,

V(jJ T <alc(ls), ) > = (Kb + 0) 4 (s + 7, s+ '+ 0)

and we have reduced to the d = 1 case.

6 Proof of Theorem 1.3

The n =1 case is trivial: F(a;(t)) = —a;(t) is the usual interpretation.
The n = 2 case follows from Sylvester’s formula:

F(ai(t), as(t)) = lem (a1(t), az(t)) — ai(t) — as(t) =

and the ged can be computed using Lemma 3.1.

For the n = 3 case, we show that the steps of Rgdseth’s algorithm [7] can be performed
on eventual quasi-polynomials. We enumerate the steps of the algorithm as described for
integers, and follow each step with a comment on how it works with elements of EQP.

(1) If d(t) = ged (aa(t), az(t), az(t)) # 1, then use that

al(t) ag(t) a;:,(t))
d(t) " d(t) " d(t) )

F(ai(t), as(t), as(t)) = d(t)F (

For elements of EQP, Lemma 3.1(4) allows us to compute this ged.

(2) We may assume that a;(t), as(t), as(t) are relatively prime where a;(t), ax(t), az(t) €
EQP. If e(t) = ged (a1(t), as(t)) # 1, then use that

F(ar(t),as(t), as(t)) = e(t)F (



This can again be done using Lemma 3.1(4).

(3) We may assume that a;(t) and ay(t) are relatively prime. Compute so(t) € EQP
such that as(t)so(t) = as(t) mod a1 (t) and 0 < so(t) < aq(t).

To do this for elements of EQP, first use Lemma 3.1(4) to find p,q € EQP such that
1 =p(t)ai(t) + q(t)az(t). Then

az(t) (as(t)q(t)) = as(t)(q(t)az(t)) = as(t) - 1 mod a;(2).

Now let sy(t) be the remainder when a3(t)q(t) is divided by a;(t), using Lemma 3.1(3).
This is the desired so(t).

(4) If so(t) = 0, then ag(t) is a multiple of a,(t), and the Frobenius problem reduces to
the n = 2 case.

If some of the components of so(t) € EQP are zero, we will have to split into cases, one
for each component.

(5) Compute ¢;,s1 € EQP such that
a1(t) = qi(t)so(t) — s1(t), 0 < s1(t) < so(t).

If deg(sp) = 0, this is a slight variant of the usual integer division algorithm. If deg(sg) >
0, use Lemma 3.1(2) to compute a;(t) = q(t)so(t) + r(t), with deg(r) < deg(sg). If r(¢)
is eventually negative or zero, simply set ¢;(t) = ¢(t) and s;(t) = —r(t), and we have
that eventually 0 < s1(t) < so(t). If 7(¢) is eventually positive, set ¢;(t) = ¢(t) + 1 and
s1(t) = so(t) — r(t), which will eventually satisfy the bounds.

(6) Continue computing

So(t) = qa(t)s1(t) — s2(t), 0 < sao(t) < s1(t),
(t) = as(0)salt) — sslt), 0

Sm—2(t) = @ (t)Sm—1(t) — s (t), 0 < 8, (t) < Sp—1(t),
Sm_l(t) = qm+1 (t)Sm(t) -+ Sm+1, Sm+1 = 0.

This is simply repeating the process from Step 5. We must establish that it terminates. It
suffices to show that, if deg(s;) > 0, then deg(s;12) < deg(s;) (and then once deg(s;) = 0,
the integers s; strictly decrease, so this will eventually terminate). Indeed, as described
in Step 5, Lemma 3.1(2) gives us s;_1(t) = q(t)s;(t) + r(t), with deg(r) < deg(s;). If r(¢)
is eventually negative or zero, we have s;,1(t) = —r(t), and the degree has decreased. If
r(t) is eventually positive, we have s;,1(t) = s;(t) — r(t), which still have the same degree
as s;. But in the next step, s;41(t) = 1 - s;(t) — (), and so s;o(t) = r(t) has lower
degree. Of course, different components of the eventual quasi-polynomials may terminate
at different m, and we must analyze each separately.
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(7) Define s_1(t) = ay(t), P-1(t) =0, Py(t) = 1, and recursively P;11(t) = q;41(t) Pi(t) —
P,_1(t). Then

~ Smai(t)  sm(t) so(t)  s-a(t)
e I I Y A oy R

Determine the unique index ¢ such that

Si—i—l(t) < a3(t) Si(t)
lDi—O—l(t) h a2(t) B(t).

Restricting to a fixed residue class modulo the period of the quasi-polynomials, such an
index ¢ exists, since each s;(t)/P;(t) is a rational function, so is eventually greater than,
eventually less than, or eventually equal to az(t)/as(t).

(8) Then

F(ai(t), az(t), as(t)) = —ai(t) + az(t) (si(t) — 1) + az(t) (P (t) — 1)
— min {as(t)si+1(t), as(t) P(t) }.

This is in EQP, by Lemma 3.1(5).
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