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Abstract

Given relatively prime positive integers a1, . . . , an, the Frobenius number is the
largest integer that cannot be written as a nonnegative integer combination of the
ai. We examine the parametric version of this problem: given ai = ai(t) as functions
of t, compute the Frobenius number as a function of t. A function f : Z+ → Z is
a quasi-polynomial if there exists a period m and polynomials f0, . . . , fm−1 such
that f(t) = ft mod m(t) for all t. We conjecture that, if the ai(t) are polynomials (or
quasi-polynomials) in t, then the Frobenius number agrees with a quasi-polynomial,
for sufficiently large t. We prove this in the case where the ai(t) are linear functions,
and also prove it in the case where n (the number of generators) is at most 3.

1 Introduction

Given positive integers ai, 1 6 i 6 n, let

〈a1, . . . , an〉 =

{
n∑

i=1

piai

∣∣∣∣∣ pi ∈ Z>0

}

be the semigroup generated by the ai. If the ai are relatively prime, define the Frobenius
number F (a1, . . . , an) to be the largest integer not in 〈a1, . . . , an〉. The Frobenius prob-
lem of determining F (a1, . . . , an) has a long history — Sylvester proved [8] in 1884 that
F (a, b) = ab− a− b, and see Ramı́rez Alfonśın’s book [5] for many subsequent results.

It will be convenient to also define F (a1, . . . , an) in the case where the ai are not
relatively prime, so that there is no largest integer not in the semigroup. A reasonable
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definition seems to be the largest integer in the group Za1 + · · ·+ Zan that is not in the
semigroup 〈a1, . . . , an〉. That is, if d is the greatest common divisor of a1, . . . , an, then
F (a1, . . . , an) = dF (a1

d
, . . . , an

d
). Sylvester’s identity then becomes F (a, b) = lcm(a, b) −

a− b.
The parametric Frobenius problem is, given functions ai : Z+ → Z+ to determine

F
(
a1(t), . . . , an(t)

)
as a function of t. For example, using Sylvester’s identity,

F (t, t+ 2) =

{
t(t+ 2)− t− (t+ 2) if t is odd,
t(t+2)

2
− t− (t+ 2) if t is even.

We see that F (t, t + 2) is a quasi-polynomial ; a function f : Z+ → Z is a quasi-
polynomial if there exist an m ∈ Z+ and polynomials f0, . . . , fm−1 ∈ Q[t] such that
f(t) = ft mod m(t) for all t ∈ Z+. Here m is a period of f and the fi are components of f .
We will assume that all of our functions are integer-valued, but note that the F (t, t+ 2)
example shows that we may need polynomials with rational coefficients.

In general, our functions may misbehave for small t. We say that a property is even-
tually true if it is true for all sufficiently large t. We say that f(t) ∈ EQP (short for
eventual quasi-polynomial) if f(t) eventually agrees with a quasi-polynomial. We say
that the degree of f ∈ EQP is the maximum degree of its components.

We conjecture that, if ai(t) ∈ EQP, then F
(
a1(t), . . . , an(t)

)
∈ EQP. We prove this

for the special case where the ai(t) are linear functions and for the special case where
n 6 3.

Conjecture 1.1. Suppose that ai(t) ∈ EQP, 1 6 i 6 n, are eventually positive. Then
F
(
a1(t), . . . , an(t)

)
∈ EQP.

Theorem 1.2. Suppose that ai(t) ∈ EQP, 1 6 i 6 n, are eventually positive and have
degree at most 1. Then F

(
a1(t), . . . , an(t)

)
∈ EQP, with degree at most 2.

Theorem 1.3. Suppose that ai(t) ∈ EQP, 1 6 i 6 n, are eventually positive, with n 6 3.
Then F

(
a1(t), . . . , an(t)

)
∈ EQP.

These results are examples of so-called “unreasonable” appearances of quasi-polyno-
mials, as discussed by Woods [10]. “Reasonable” appearances trace back to Ehrhart’s
classical result [3] that, if P ⊆ Rn is a polytope with rational vertices, then f(t) =
#(tP ∩ Zn) is a quasi-polynomial. Note that if P is defined with linear inequalities
bi · x 6 ci, then tP is defined with linear inequalities bi · x 6 cit. As t changes, these
linear inequalities move, but their normal vectors (bi) remain the same. Indeed, Woods
proved [11] that any example over the integers defined with linear inequalities, boolean
operations (and, or, not), and quantifiers (∀, ∃) has this quasi-polynomial behavior. This
is true even if there is more than one parameter; for example,

#
{

(x, y) ∈ Z2
>0

∣∣ 2x 6 t, 3y 6 s
}

=

(⌊
t

2
+ 1

⌋)(⌊s
3

+ 1
⌋)

is a quasi-polynomial of period 2 in t and period 3 in s.
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If we look at the parametric Frobenius problem, however, we see that it does not fit
this pattern. For example, if we want to ask whether u ∈ 〈t, t+ 1, t+ 2〉, we are asking
whether the polytope{

(x, y, z) ∈ R3
>0

∣∣u = tx+ (t+ 1)y + (t+ 2)z
}

contains any integer points. For a fixed t, this is a 2-dimensional triangle in R3; as t
changes, this triangle “twists” (the normal vector changes). Examples such as this were
categorized in [10] as “unreasonable”, though they are conjectured to still lead to eventual
quasi-polynomial behavior.

This paper adds a third example to the list of recent results demonstrating this phe-
nomenon; previously Chen, Li, and Sam [2] showed that the number of integer points in a
polytope whose vertices are rational functions of t is in EQP, and Calegari and Walker [1]
showed that the vertices of the integer hull of such a polytope have coordinates in EQP.
A critical tool used in all of these results is that the division algorithm and the gcd of
polynomials has quasi-polynomial behavior (cf. Lemma 3.1); for example, the Euclidean
algorithm yields

gcd(2t+ 1, 5t+ 6) = gcd(t+ 4, 2t+ 1) = gcd(7, t+ 4) =

{
7 if t ≡ 3 mod 7,

1 otherwise.

Note that unlike in the “reasonable” case, these results only hold with one parameter
variable. For example F (s, t) = lcm(s, t)− s− t is not a quasi-polynomial in s and t.

The original inspiration for this paper comes from a conjecture of Wagon [9] (see [4,
Section 17]) that, for any fixed M and residue class j of t mod M2, there exist (usually
positive) integers cM,j and dM,j such that eventually

F (t, t+ 12, t+ 22, . . . , t+M2) =
1

M2

(
t2 + cM,jt

)
− dM,j.

Using the proof of Theorem 1.2, we can prove that there is indeed quasi-polynomial
behavior with period M2. In fact, such a result holds in greater generality:

Corollary 1.4. Suppose b1 < b2 < b3 < · · · < bn are integers. Then F (t+b1, t+b2, . . . , t+
bn) ∈ EQP with period bn − b1.

When the bi form an arithmetic sequence, a precise quasi-polynomial formula was
previously given by Roberts [6]:

F (t, t+ d, . . . , t+ sd) =

(⌊
t− 2

s

⌋
+ 1

)
t+ (d− 1)(t− 1)− 1.

In Section 2, we work through the example

F (t, t+ 1, t+ 2) =

(⌊
t− 2

2

⌋
+ 1

)
t− 1 =

{
t2

2
if t even,

t2

2
− t

2
− 1 if t odd,
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which will give a flavor of our general proof. In Section 3, we prove Theorem 1.2. In
Section 4, we prove the various lemmas needed. In Section 5, we prove Corollary 1.4.
In Section 6, we prove Theorem 1.3, using Rødseth’s algorithm [7] for the 3 generator
Frobenius problem.

The proof of Theorem 1.2 relies on the fact that semigroups with only two generators
are much easier to deal with. Indeed, we have the following definition and lemma:

Definition 1.5. Let a, b ∈ Z+ be relatively prime, and let c ∈ Z. The canonical form for
c is given by c = pa+ qb with p, q ∈ Z and 0 6 p < b.

Lemma 1.6. Let a, b ∈ Z+ be relatively prime, and let c ∈ Z.

1. The canonical form for c exists and is unique. In particular, if c = p′a + q′b is
any form with p′, q′ ∈ Z, and if k and r are the quotient and remainder when p′ is
divided by b, then the canonical form for c is ra+ (q′ + ka)b.

2. If c = pa+ qb is in canonical form, c ∈ 〈a, b〉 if and only if q > 0.

2 An Example

In this example, we compute F (t, t+ 1, t+ 2). Let a = t, b = t+ 1, and c = t+ 2 be our
three generators, let S = 〈a, b, c〉, and let T = 〈a, c〉. Notice that 2b = a+ c. This implies
that S = T ∪ (b + T ), as follows: if pa + qb + rc is a representation of an element of S,
with p, q, r ∈ Z>0 and q > 2, then (p + 1)a + (q − 2)b + (r + 1)c is also a representation,
so we may assume without loss of generality that q is 0 or 1 (cf. Lemma 3.4). Next, we
run the extended Euclidean algorithm on the integers a and c, and get

gcd(a, c) = gcd(t, t+ 2) = gcd(2, t)

(cf. Lemma 3.1). The next division step in the algorithm depends on the parity of t, and
rather than end up with the messy bt/2c, we divide into two cases.

The case t is odd: Let t = 2s + 1, so that a = 2s + 1, b = 2s + 2, and c = 2s + 3.
Now

gcd(a, c) = gcd(2, 2s+ 1) = gcd(1, 2) = 1,

and the extended Euclidean algorithm yields 1 = (s + 1)a − sc. Let u ∈ Z, and we are
wondering whether u /∈ S, that is, u /∈ T and u /∈ b+ T . Suppose that

u = pa+ qc

is the canonical form for u (see Definition 1.5). Lemma 1.6(2) tells us that u ∈ T if and
only if q > 0. Since we are looking for u /∈ T , we may assume from here on out that
q < 0. To characterize when u ∈ b + T (that is, u − b ∈ T ) we must find the canonical
form for u− b.
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First we compute the canonical form for b. Multiplying the equation 1 = (s+ 1)a− sc
by b = 2s+ 2 yields some form for b:

b = (2s+ 2)(s+ 1)a− (2s+ 2)sc.

By Lemma 1.6(1), we may find the canonical form by dividing (2s+2)(s+1) by c = 2s+3:
the quotient is s with remainder s+ 2, giving the canonical form for b as

b = (s+ 2)a− sc.

Note that we got a little lucky here: our remainder of s+ 2 is clearly less than c = 2s+ 3;
if our remainder had instead been s+ 7, say, then we would only have the canonical form
for sufficiently large s.

Now we have that some form for u− b is

u− b = (p− s− 2)a+ (q + s)c.

Is this the canonical form? There are two cases:
If p > s + 2, then 0 6 p− s− 2 6 p < c, and this is in canonical form. Therefore, to

have u− b ∈ T , we must have q + s > 0 (again using Lemma 1.6(2)), that is, q > −s.
If p < s+ 2, then the canonical form is

u− b = (p− s− 2 + c)a+ (q + s− a)c = (p+ s+ 1)a+ (q − s− 1)c

(to check that this is canonical, note that p > 0 and s + 2 < c imply p − s − 2 + c > 0,
and p < s + 2 implies p − s − 2 + c < c). In this case, to have u − b ∈ T , we must have
q > s+1. This implies that q > 0, but we have assumed q < 0 (so that u /∈ T ). Therefore
this case never has u− b ∈ T .

To summarize across both cases, if u = pa + qc, with 0 6 p < c = 2s + 3 in the
canonical form, then u /∈ S if and only if

not(q > 0) and not
(
(p, q) > (s+ 2,−s)

)
(cf. Lemma 3.5). The set of such (p, q) has a “stairstep” shape, as can be seen in Figure
1 for t = 5. In particular, the set of such (p, q) can be rewritten as p > 0 and(

p 6 s+ 1 and q 6 −1
)

or
(
p 6 2s+ 2 and q 6 −s− 1

)
(cf. proof of Lemma 3.6, d = 1 case). The two “corners” in this picture, where both
inequalities of one of these two conjunctions are tight, give our candidates for the largest
u /∈ S: it must be either

(s+ 1)a− 1c = 2s2 + s− 2 or (2s+ 2)a+ (−s− 1)c = 2s2 + s− 1.

The latter is always larger (in general, one might only be eventually larger than the other),
and so we have

F (t, t+ 1, t+ 2) = 2s2 + s− 1 =
t2

2
− t

2
− 1,
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Figure 1: The t = 5 case of the example. We have T = 〈5, 7〉 and S = 〈5, 6, 7〉 = T∪(6+T ).
Points (p, q) ∈ Z2 with 0 6 p < 7 are the canonical forms for u = 5p + 7q ∈ Z. Then
q > 0 corresponds to u ∈ T , (p, q) > (4,−2) corresponds to u ∈ 6 + T , and positive u
such that u /∈ S are labelled beside their corresponding (p, q). The “corners” u = 8 and
u = 9 are candidates for the Frobenius number, and so F (5, 6, 7) = max{8, 9} = 9.

in this case where t = 2s+ 1 is odd.

The case t is even: Let t = 2s, so that a = 2s, b = 2s + 1, and c = 2s + 2. To
have u /∈ S we must have both u /∈ T = 〈a, c〉 and u /∈ b + T . Note that every element
in T is even and every element of b + T is odd. Therefore the largest even integer not
in S is the largest even integer not in T , which since T has only 2 generators is simply
lcm(a, c) − a − c = 2s2 − 2s − 2 (we’re getting lucky here that we didn’t have to do an
analysis similar to the t is odd case). Similarly the largest odd integer not in S is the
largest odd integer not in b+T , which is b+(2s2−2s−2) = 2s2−1. The largest integer not
in S is then the maximum of these two candidates, so F (t, t+ 1, t+ 2) = 2s2− 1 = t2

2
− 1

(cf. proof of Lemma 3.6, d > 1 case), in this case where t is even.

Combining the even and odd case, we have proved that

F (t, t+ 1, t+ 2) =

{
t2

2
if t even,

t2

2
− t

2
− 1 if t odd.

3 Proof of Theorem 1.2

This first lemma gives us the basic tools we need:

Lemma 3.1. Given f, g ∈ EQP,

1. There exists an m ∈ Z+ such that, for each 0 6 j < m, f(ms+ j) eventually agrees
with a polynomial in Z[s].
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2. If deg(g) > 0, there exists q, r ∈ EQP such that f(t) = q(t)g(t) + r(t) and deg(r) <
deg(g). Note that this is the analogue of the traditional division algorithm over Q[t].

3. If g(t) is eventually positive, there exists q, r ∈ EQP such that f(t) = q(t)g(t) + r(t)
and eventually 0 6 r(t) < g(t). Furthermore, deg(r) 6 deg(g). Note that this is the
analogue of the traditional division algorithm over Z.

4. There exists p, q, d ∈ EQP such that gcd
(
f(t), g(t)

)
= d(t) and d(t) = p(t)f(t) +

q(t)g(t).

5. We have max
(
f(t), g(t)

)
∈ EQP.

These are proved in Section 4 of [2] (and also in [1]), so in Section 4 we merely give
an outline of the important steps.

Remark 3.2. Lemma 3.1(1) will allow us to often simply say “without loss of generality,
f ∈ Z[t]”: we may analyze f(ms + j) for each j, recognize that statements may be false
for small s, and then convert back to t using s = (t− j)/m.

Using this remark, we may assume that the ai(t) are polynomials in Z[t]. Since they
are of degree at most 1 and eventually positive, we have that

ai(t) = αit+ βi,

with either αi ∈ Z+, βi ∈ Z or αi = 0, βi ∈ Z+. Furthermore, without loss of generality,
we may assume that they are ordered so that

βiαj 6 βjαi

for i 6 j, that is (for αi 6= 0),

β1
α1

6
β2
α2

6 · · · 6 βn
αn

.

We first consider a degenerate case, where βiαj = βjαi, for all i, j.

Lemma 3.3. If βiαj = βjαi, for all i, j, then there are α0, β0 ∈ Z>0 such that, for all i,
αi = γiα0 and βi = γiβ0 (for some γi ∈ Z+). Therefore

F
(
a1(t), . . . , an(t)

)
= F (γ1, . . . , γn) · (α0t+ β0)

is a polynomial of degree at most 1.

Therefore, we can assume that β1αn < βnα1. In particular, the polynomials a1 and
an do not share a linear factor, and so if d(t) = gcd

(
a1(t), an(t)

)
, then d(t) ∈ EQP is

of degree 0, that is, d(t) is eventually a periodic function. Let S(t) = 〈a1(t), . . . , an(t)〉,
and let T (t) = 〈a1(t), an(t)〉. T (t) is a semigroup with only two generators, so it is much
easier to analyze. The following lemma allows us to cover S(t) with a finite number of
translated copies of T (t).
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Lemma 3.4. For ai(t) = αit+βi as described above, there exists a finite set H of integer-
valued polynomials of degree at most 1 such that

〈a1(t), . . . , an(t)〉 =
⋃
h∈H

(
h(t) + 〈a1(t), an(t)〉

)
(for t sufficiently large so that ai(t) > 0,∀i). Furthermore, 0 ∈ H and the other h ∈ H
are eventually positive.

Assume for the moment that a1(t) and an(t) are relatively prime. By Lemma 1.6(2),
the set of all integers not in T will be in bijection to the set{

(p, q) ∈ Z2
∣∣ 0 6 p < an(t), q < 0

}
,

under the bijection (p, q) 7→ pa1(t) + qan(t). By Lemma 3.4, integers not in S must also
not be in h(t) + T , for all h ∈ H. The following lemma gives an easy way to check this.

Lemma 3.5. Let f, g, h ∈ EQP, with f(t) and g(t) relatively prime for all t and with
f(t), g(t), h(t) eventually positive. There exists r, s ∈ EQP such that, given p, q ∈ Z with
0 6 p < g(t) and q < 0,

pf(t) + qg(t) ∈ h(t) + 〈f(t), g(t)〉 if and only if (p, q) >
(
r(t), s(t)

)
component-wise. Furthermore, deg(r) 6 deg(g) and deg(s) 6 max{deg(f), deg(h) −
deg(g)},

In our case, this gives r, s of degree at most 1. If a1(t) and an(t) are relatively prime, all
that remains is to follow the implications of Lemmas 3.4 and Lemma 3.5, which will give
us a staircase-shaped set such as in Figure 1. If a1(t) and an(t) are not relatively prime, we
must reduce to the case where they are. Both of these are accomplished in the following
lemma, which (combined with Lemma 3.4 and the fact that d(t) = gcd

(
f(t), g(t)

)
is of

degree 0) proves our theorem.

Lemma 3.6. Let f(t), g(t) ∈ EQP, and let d(t) = gcd
(
f(t), g(t)

)
be of degree 0, let

H ⊆ EQP be a finite set, and let

S(t) =
⋃
h∈H

(
h(t) + 〈f(t), g(t)〉

)
.

The function F (t) giving the largest integer not in S(t) is in EQP, with degree at most
max{deg(f) + deg(g), deg(h)}.

In our case, this gives that F is of degree at most 2.
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4 Proofs of Lemmas

Proof of Lemma 1.6. Part 1 is a standard result, using the extended Euclidean algorithm
and the fact that if c = p′a + q′b is one solution, then all solutions are given by c =
(p′ − kb)a+ (q′ + ka)b for k ∈ Z.

For part 2, we have c = pa+ qb with 0 6 p < b. The reverse implication is immediate:
if q > 0, then we have written c = pa + qb with p, q ∈ Z>0, proving that c ∈ 〈a, b〉.
Conversely, suppose c ∈ 〈a, b〉 so that c = p′a + q′b with p′, q′ ∈ Z>0. By part 1, if k and
r are the quotient and remainder when p′ is divided by b, then

c = ra+ (q′ + ka)b

is the canonical form for c, with q = q′ + ka > 0.

Proof of Lemma 3.1. As these are proved in Section 4 of [2], we simply give an outline
here.

For part 1, this is mostly obvious: simply take component polynomials of the quasi-
polynomial. The main subtlety, as seen in the example from Section 2, is that integer-
valued polynomials may have non-integral coefficients. In this case, let m be the least
common multiple of the denominators of the coefficients. Examining f(ms + i), we see
that all coefficients of sk must be integral, except possibly the constant coefficient; since
the function is integer-valued, the constant coefficient must also be integral.

For part 2, simply perform polynomial division. The main subtlety is the following:
Suppose, for example, that f(t) = t2 + 3t and g(t) = 2t+ 1. Then the leading coefficient
of g does not divide the leading coefficient of f , and the traditional polynomial division
algorithm would produce quotients that are not integer-valued. Instead, we look sepa-
rately at each residue class of t modulo the leading coefficient of g; for example, if t is
odd, then t = 2s + 1 for some s ∈ Z>0, so substituting gives f(2s + 1) = 4s2 + 10s + 3
and g(2s+ 1) = 4s+ 3, and now the leading term does divide evenly.

For part 3, first perform the polynomial division algorithm for part 2. For example,
suppose f(t) = 2t− 3 and g(t) = t, yielding f = 2g +−3. For part 3, however, we want
the integer division algorithm: f(t) = 1g(t)+(t−3), and the remainder t−3 is between 0
and g as long as t > 3. In other words, if we have found f = q′g+r′ with deg(r′) < deg(g),
but we eventually have r′(t) < 0, then we should use quotient q = q′ − 1 and remainder
r = g + r′ instead, as eventually 0 6 g(t) + r′(t) < g(t).

For part 4, run the extended Euclidean algorithm, repeatedly performing the division
algorithm of part 2.

For part 5, note that given two polynomials, one eventually dominates the other.

Proof of Lemma 3.3. For each i, let γi = gcd(αi, βi) ∈ Z+, let α′i = αi/γi, and let β′i =
βi/γi, with α′i and β′i relatively prime. Dividing βiαj = βiαi by γiγj yields β′iα

′
j = β′jα

′
i.

Since α′j divides β′jα
′
i and is relatively prime to β′j, we have that α′j divides α′i. Similarly,

α′i divides α′j, and so α′i = α′j. Similarly, β′i = β′j. Taking α0 to be the common α′i (equal
for all i) and β0 to be the common β′i, the proof follows.
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Proof of Lemma 3.4. Let r = βnα1−β1αn. We are given that r > 0 and that βjαi−βiαj >
0 for all i 6 j. Let

H =
{
λ2a2 + · · ·+ λn−1an−1

∣∣λi ∈ Z>0, λi < r
}
.

We will prove that H has the required properties; certainly every element of H is of degree
at most 1. We must show that, if u ∈ 〈a1(t), . . . , an(t)〉, then there exists a λ ∈ Zn

>0 such
that u = λ1a1(t) + · · ·+ λnan(t) and λi < r for 2 6 i 6 n− 1.

By definition of the semigroup, there exists a λ ∈ Zn
>0 such that u = λ1a1(t) + · · · +

λnan(t). Suppose that λi > r for some i with 2 6 i 6 n − 1. Let p = βnαi − βiαn and
q = βiα1 − β1αi and observe that p, q > 0. Then

pa1(t) + qan(t) = (βnαi − βiαn)(α1t+ β1) + (βiα1 − β1αi)(αnt+ βn)

= βnαiα1t− βiαnβ1 + βiα1βn − β1αiαnt

= (βnα1 − β1αn)(αit+ βi)

= rai(t).

Now define λ′ by λ′1 = λ1 + p, λ′i = λi− r, λ′n = λn + q, and λ′j = λj for all other j. Then

u = λ′1a1(t) + · · ·+ λ′nan(t)

is a new representation of u. Repeating this process eventually yields a representation
with λi < r for 2 6 i 6 n− 1.

Proof of Lemma 3.5. Assume 0 6 p < g(t) and q < 0. We need conditions on p, q for
which pf(t) + qg(t) − h(t) ∈ 〈f(t), g(t)〉. By Lemma 3.1(4) and the fact that f(t) and
g(t) are relatively prime, we may write 1 = r′(t)f(t) + s′(t)g(t), where r′, s′ ∈ EQP.
Multiplying this equation by h(t) yields

h(t) =
(
h(t)r′(t)

)
f(t) +

(
h(t)s′(t)

)
g(t).

If we let k(t) and r(t) be the quotient and remainder when h(t)r′(t) is divided by g(t),
using Lemma 3.1(3), and let s(t) = h(t)s′(t) + k(t)f(t), then we have

h(t) = r(t)f(t) + s(t)g(t),

with 0 6 r(t) < g(t). In particular, this gives us that deg(r) 6 deg(g) and therefore
deg(s) 6 max{deg(f), deg(h)− deg(g)}. We have

pf(t) + qg(t)− h(t) =
(
p− r(t)

)
f(t) +

(
q − s(t)

)
g(t). (1)

The case p > r(t): Then 0 6 p − r(t) < g(t), and (1) is in canonical form. Then
pf(t) + qg(t)− h(t) ∈ 〈f(t), g(t)〉 if and only if q − s(t) > 0, by Lemma 1.6(2).

The case p < r(t): Then the canonical form for pf(t) + qg(t)− h(t) will be(
p− r(t) + g(t)

)
f(t) +

(
q − s(t)− f(t)

)
g(t), (2)
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since 0 6 p < r(t) and r(t) < g(t) imply that

0 < p− r(t) + g(t) < g(t).

Since h(t), r(t), f(t), and g(t) are eventually positive and r(t) < g(t), we eventually have

0 < h(t) = r(t)f(t) + s(t)g(t) < g(t)
(
f(t) + s(t)

)
,

and so eventually f(t) + s(t) > 0. Since we are assuming that q < 0, eventually q− s(t)−
f(t) < 0. Therefore the canonical form (2) shows that pf(t) + qg(t)− h(t) /∈ 〈f(t), g(t)〉,
by Lemma 1.6(2).

Combining the two cases, we see that pf(t) + qg(t) ∈ h(t) + 〈f(t), g(t)〉 exactly when
p > r(t) and q > s(t), as desired.

Proof of Lemma 3.6. Since d(t) ∈ EQP is of degree zero, it is eventually a periodic func-
tion. By Remark 3.2, we may focus on a component of d(t) and assume that d(t) = d is
a constant.

The case d = 1: We assume, without loss of generality, that 0 ∈ H and the other
functions in H are eventually positive: if not, let h0(t) be the eventually minimal polyno-
mial in H, and find the largest integer F ′(t) not in

S ′(t) =
⋃
h∈H

((
h(t)− h0(t)

)
+ 〈f(t), g(t)〉

)
;

then F (t) = F ′(t) + h0(t).
We wish to describe the set U(t) of (p, q) corresponding to canonical forms u = pf(t)+

qg(t) such that u /∈ S. Canonical implies that 0 6 p < g(t), and u /∈ (0 + 〈f(t), g(t)〉)
implies that q < 0, by Lemma 1.6(2). Each h ∈ H \ {0} gives the condition “p <
rh(t) or q < sh(t)”, by Lemma 3.5. Then the set U(t) has a “stairstep” shape as in
Figure 1. To be precise, order the

(
rh(t), sh(t)

)
such that r1(t) 6 r2(t) 6 · · · 6 rm(t)

(eventually). Notice that if ri(t) 6 rj(t), then we may assume without loss of generality
that si(t) > sj(t) (eventually), or else the condition “p < rj(t) or q < sj(t)” would be
redundant. Further include

(
r0(t), s0(t)

)
= (0, 0) (corresponding to u /∈ 0 + 〈f(t), g(t)〉)

and
(
rm+1(t), sm+1(t)

)
=
(
g(t),−f(t)

)
(corresponding to (p, q) being canonical). Finally,

for 0 6 i 6 m, let
(
αi(t), βi(t)

)
=
(
ri+1(t)− 1, si(t)− 1

)
. Then the set of (p, q) ∈ U(t) is

exactly the set such that 0 6 p and

(p, q) 6
(
α0(t), β0(t)

)
or · · · or (p, q) 6

(
αm(t), βm(t)

)
.

Since if (p, q) 6
(
αi(t), βi(t)

)
, then pf(t) + qg(t) 6 αi(t)f(t) + βi(t)g(t), our candidates

for the largest integer not in S(t) are the αi(t)f(t) + βi(t)g(t), 0 6 i 6 m. Then our final
answer is

max
06i6m

αi(t)f(t) + βi(t)g(t),

which is in EQP, by Lemma 3.1(5). Furthermore, using that deg(αi) = deg(ri) 6 deg(g)
and deg(βi) = deg(si) 6 max{deg(f), deg(h)− deg(g)}, by Lemma 3.5, we have that our
final degree is at most max{deg(f) + deg(g), deg(h)}.
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The case d > 1: Let Hj(t) = {h ∈ H |h(t) ≡ j mod d}. The remainder when a
given h(t) is divided by d is a periodic function, by Lemma 3.1(3); applying Remark 3.2
as necessary, we may assume that these remainders are constant, that is, that Hj = Hj(t)
does not depend on t. Let Sj(t) = {u ∈ S(t) |u ≡ j mod d}. Since d divides every element
of 〈f(t), g(t)〉,

Sj(t) =
⋃

h∈Hj

(
h(t) + 〈f(t), g(t)〉

)
.

Let Fj(t) be the largest integer not in

1

d
(Sj(t)− j) =

⋃
h∈Hj

(
h(t)− j

d
+

〈
f(t)

d
,
g(t)

d

〉)
.

By the case d = 1 proved above, Fj(t) is in EQP. Since dFj(t) + j is the maximum
u ∈ j+dZ such that u /∈ Sj(t), we get that F (t) = maxj (dFj(t) + j). Lemma 3.1(5) then
implies that F (t) is in EQP.

5 Proof of Corollary 1.4

Without loss of generality, we may assume that b1 = 0 (substituting s = t − b1, if
necessary). For a fixed j ∈ Z, look at all t ≡ j mod bn, and let s be such that t = bns+ j.
Let ai(s) = t+ bi = bns+ j + bi. We must prove that F

(
a1(s), . . . , an(s)

)
is a polynomial

in s. We follow the proof of Theorem 1.2 and of the lemmas, looking for places where
periodicity might be introduced. Note that the ai(s) are correctly ordered (as defined
before the statement of Lemma 3.3) so that Lemma 3.4 gives us

S =
⋃
h∈H

(
h(s) + 〈a1(s), an(s)〉

)
.

Following the proof of Lemma 3.4, note that each h ∈ H is a nonnegative integer
combination of a2(s), . . . , an−1(s). In particular, each h ∈ H has the form kbns + ` for
some integers k and `.

Focus on a specific h = kbns+ `. Let

d(s) = gcd
(
a1(s), an(s)

)
= gcd(bns+ j, bns+ j + bn) = gcd(bn, bns+ j) = gcd(j, bn),

which is a constant. Finding p and q with pj + qbn = d gives us

d = (ps− q + p)a1(s)− (ps− q)an(s).

Assume for the moment that d = 1. We next examine the proof of Lemma 3.5. The first
step is to take

h = h · 1 = h ·
(
(ps− q + p)a1(s)− (ps− q)an(s)

)
=
(
(kbns+ `)(ps− q + p)

)
a1(s)−

(
(kbns+ `)(ps− q + p)

)
an(s),
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and write it in canonical form. This involves taking the remainder when dividing

(kbns+ `)(ps− q + p) = kpbns
2 + (`p− kbnq + kbnp)s+ (−`q + `p)

by an(s) = bns + j + bn. The first step of polynomial long division works over the
integers, because the leading coefficient, bn, of an(s) divides into the leading coefficient,
kpbn, of the dividend. This leaves a remainder that is linear in s. One more step of long
division (dividing a linear in s function by a linear in s function and taking the linear in
s remainder) will then lead to the final answer, without introducing extra periodicity.

No other steps in the entire proof have a possibility of adding periodicity, so we are
done, in the case d = 1.

If d > 1, following the proof of Lemma 3.6 in the d > 1 case, let b′n = bn/d, j′ = j/d,
and `′ = b`/dc be integers. Then the reduction to the d = 1 case gives that we must
examine, ⌊

h(s)

d

⌋
+

〈
a1(s)

d
,
an(s)

d

〉
= (kb′ns+ `′) + 〈b′ns+ j′, b′ns+ j′ + b′n〉 ,

and we have reduced to the d = 1 case.

6 Proof of Theorem 1.3

The n = 1 case is trivial: F
(
a1(t)

)
= −a1(t) is the usual interpretation.

The n = 2 case follows from Sylvester’s formula:

F
(
a1(t), a2(t)

)
= lcm

(
a1(t), a2(t)

)
− a1(t)− a2(t) =

a1(t)a2(t)

gcd
(
a1(t), a2(t)

) − a1(t)− a2(t),
and the gcd can be computed using Lemma 3.1.

For the n = 3 case, we show that the steps of Rødseth’s algorithm [7] can be performed
on eventual quasi-polynomials. We enumerate the steps of the algorithm as described for
integers, and follow each step with a comment on how it works with elements of EQP.

(1) If d(t) = gcd
(
a1(t), a2(t), a3(t)

)
6= 1, then use that

F
(
a1(t), a2(t), a3(t)

)
= d(t)F

(
a1(t)

d(t)
,
a2(t)

d(t)
,
a3(t)

d(t)

)
.

For elements of EQP, Lemma 3.1(4) allows us to compute this gcd.

(2) We may assume that a1(t), a2(t), a3(t) are relatively prime where a1(t), a2(t), a3(t) ∈
EQP. If e(t) = gcd

(
a1(t), a2(t)

)
6= 1, then use that

F
(
a1(t), a2(t), a3(t)

)
= e(t)F

(
a1(t)

e(t)
,
a2(t)

e(t)
, a3(t)

)
+ a3(t)

(
e(t)− 1

)
.
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This can again be done using Lemma 3.1(4).

(3) We may assume that a1(t) and a2(t) are relatively prime. Compute s0(t) ∈ EQP
such that a2(t)s0(t) ≡ a3(t) mod a1(t) and 0 6 s0(t) < a1(t).

To do this for elements of EQP, first use Lemma 3.1(4) to find p, q ∈ EQP such that
1 = p(t)a1(t) + q(t)a2(t). Then

a2(t)
(
a3(t)q(t)

)
= a3(t)

(
q(t)a2(t)

)
≡ a3(t) · 1 mod a1(t).

Now let s0(t) be the remainder when a3(t)q(t) is divided by a1(t), using Lemma 3.1(3).
This is the desired s0(t).

(4) If s0(t) = 0, then a3(t) is a multiple of a1(t), and the Frobenius problem reduces to
the n = 2 case.

If some of the components of s0(t) ∈ EQP are zero, we will have to split into cases, one
for each component.

(5) Compute q1, s1 ∈ EQP such that

a1(t) = q1(t)s0(t)− s1(t), 0 6 s1(t) < s0(t).

If deg(s0) = 0, this is a slight variant of the usual integer division algorithm. If deg(s0) >
0, use Lemma 3.1(2) to compute a1(t) = q(t)s0(t) + r(t), with deg(r) < deg(s0). If r(t)
is eventually negative or zero, simply set q1(t) = q(t) and s1(t) = −r(t), and we have
that eventually 0 6 s1(t) < s0(t). If r(t) is eventually positive, set q1(t) = q(t) + 1 and
s1(t) = s0(t)− r(t), which will eventually satisfy the bounds.

(6) Continue computing

s0(t) = q2(t)s1(t)− s2(t), 0 6 s2(t) < s1(t),

s1(t) = q3(t)s2(t)− s3(t), 0 6 s3(t) < s2(t),

...

sm−2(t) = qm(t)sm−1(t)− sm(t), 0 6 sm(t) < sm−1(t),

sm−1(t) = qm+1(t)sm(t) + sm+1, sm+1 = 0.

This is simply repeating the process from Step 5. We must establish that it terminates. It
suffices to show that, if deg(si) > 0, then deg(si+2) < deg(si) (and then once deg(si) = 0,
the integers si strictly decrease, so this will eventually terminate). Indeed, as described
in Step 5, Lemma 3.1(2) gives us si−1(t) = q(t)si(t) + r(t), with deg(r) < deg(si). If r(t)
is eventually negative or zero, we have si+1(t) = −r(t), and the degree has decreased. If
r(t) is eventually positive, we have si+1(t) = si(t)− r(t), which still have the same degree
as si. But in the next step, si+1(t) = 1 · si(t) − r(t), and so si+2(t) = r(t) has lower
degree. Of course, different components of the eventual quasi-polynomials may terminate
at different m, and we must analyze each separately.
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(7) Define s−1(t) = a1(t), P−1(t) = 0, P0(t) = 1, and recursively Pi+1(t) = qi+1(t)Pi(t)−
Pi−1(t). Then

0 =
sm+1(t)

Pm+1(t)
<
sm(t)

Pm(t)
< · · · < s0(t)

P0(t)
<
s−1(t)

P−1(t)
=∞.

Determine the unique index i such that

si+1(t)

Pi+1(t)
6
a3(t)

a2(t)
<
si(t)

Pi(t)
.

Restricting to a fixed residue class modulo the period of the quasi-polynomials, such an
index i exists, since each si(t)/Pi(t) is a rational function, so is eventually greater than,
eventually less than, or eventually equal to a3(t)/a2(t).

(8) Then

F
(
a1(t), a2(t), a3(t)

)
= −a1(t) + a2(t) (si(t)− 1) + a3(t)

(
Pi+1(t)− 1

)
−min

{
a2(t)si+1(t), a3(t)Pi(t)

}
.

This is in EQP, by Lemma 3.1(5).
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