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Abstract. A Presburger formula is a Boolean formula with variables in
N that can be written using addition, comparison (<, =, etc.), Boolean
operations (and, or, not), and quantifiers (V and 3). We characterize sets
that can be defined by a Presburger formula as exactly the sets whose
characteristic functions can be represented by rational generating func-
tions; a geometric characterization of such sets is also given. In addition,
if p = (p1,...,pn) are a subset of the free variables in a Presburger
formula, we can define a counting function g(p) to be the number of
solutions to the formula, for a given p. We show that every counting
function obtained in this way may be represented as, equivalently, either
a piecewise quasi-polynomial or a rational generating function. In the full
version of this paper, we also translate known computational complexity
results into this setting and discuss open directions.

1 Introduction

A broad and interesting class of sets are those that can be defined over N =
{0,1,2,...} with first order logic and addition.

Definition 1. A Presburger formula is a Boolean formula with variables in N
that can be written using addition, comparison (<, =, etc.), Boolean operations
(and, or, not), and quantifiers (V¥ and 3). We will denote a generic Presburger
formula as F(u), where u are the free variables (those not associated with a
quantifier); we use bold notation like u to indicate vectors of variables.

We say that a set S C N? is a Presburger set if there exists a Presburger
formula F(u) such that S = {u e N¢: F(u)}.

Ezxample 1. The Presburger formula
F(u)=(u>1land 3beN: b+b+1=u)

defines the Presburger set {3,5,7,...}. Since multiplication by an integer is the
same as repeated addition, we can conceive of a Presburger formula as a Boolean
combination of integral linear (in)equalities, appropriately quantified: 3b (u > 1
and 2b+ 1 = u)
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Presburger proved [35] that the truth of a Presburger sentence (a formula
with no free variables) is decidable. In contrast, a broader class of sentences,
where multiplication of variables is allowed, is undecidable; this is a consequence
of the negative solution to Hilbert’s 10th problem, given by Davis, Putnam,
Robinson, and Matiyasevich (see, for example, [19]).

We would like to understand more clearly the structure of a given Presburger
set. One way to attempt to do this is to encode the elements of the set into a
generating function.

Definition 2. Given a set S C N, its associated generating function is

f(S;X):ZXs: Z xytas? - xyt

seS (81,.--,84)ES

For example, if S is the set defined by Example [I| then
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We see that, in this instance, the generating function has a nice form; this is not
a coincidence.

Definition 3. A rational generating function is a function that can be written
in the form
q(x)
(]_ 7Xb1)...(]_ 7ka)’

where q(x) is a polynomial in Q[x] and b; € N¢\ {0}.

We will prove that S C N? is a Presburger set if and only if f(S;x) is
a rational generating function. These are Properties 1 and 3 in the following
theorem:

Theorem 1. Given a set S C N%, the following are equivalent:

1. S is a Presburger set,

2. S is a finite union of sets of the form PN (A+ A), where P is a polyhedron,
A€ Z? and A C Z4 is a lattice.

3. f(S;x) is a rational generating function.

Property 2 gives a nice geometric characterization of Presburger sets; the set
in Example [1] can be written as [3,00) N (1 + 2Z).

We are particularly interested in generating functions because of their pow-
erful flexibility: we can use algebraic manipulations to answer questions about
the set. For example, f(S;1,1,...,1) is exactly the cardinality of S (if finite).
More generally, we may want to count solutions to a Presburger formula as a
function of several parameter variables:

Definition 4. The Presburger counting function for a given Presburger formula
F(e,p) is
gr(p) = #{c €N F(e,p)}).



Note that ¢ (the counted variables) and p (the parameter variables) are free
variables. We will restrict ourselves to counting functions such that gp(p) is
finite for all p € N™. One could instead either include co in the codomain of gp
or restrict the domain of gr to where gp(p) is finite (this domain would itself
be a Presburger set).

A classic example is to take F'(c, p) to be the conjunction of linear inequalities
of the form ajc; 4+ - - +agcq < agp, where a; € Z. Then gr(p) counts the number
of integer points in the p*" dilate of a polyhedron.

Example 2. If F(cy,ca,p) is 2¢1 +2co < p, then the set of solutions (¢, cp) € N2
lies in the triangle with vertices (0,0), (0,p/2), (p/2,0), and

artr= (8] +1) (8] +2

B %p2+%p+1 if p is even,
%p2+%p+% if p is odd.

The nice form of this function is also not a coincidence. For this particular
type of Presburger formula (dilates of a polyhedron), Ehrhart proved [21] that
the counting functions are quasi-polynomials:

Definition 5. A quasi-polynomial (over Q) is a function g : N* — Q such
that there exists an n-dimensional lattice A C Z" together with polynomials
¢5(p) € Qlp], one for each A € Z™ /A, such that

g(p) = ¢x(p), forp € \.

In Example [2| we can take the lattice A = 2Z and each coset (the evens and the
odds) has its associated polynomial. We need something slightly more general
to account for all Presburger counting functions:

Definition 6. A piecewise quasi-polynomial is a function g : N — Q such that
there exists a finite partition | J,(P; N N™) of N® with P; polyhedra (which may
not all be full-dimensional) and there exist quasi-polynomials g; such that

g(p) = gi(p) for pe P,NN".

One last thing that is not a coincidence: For the triangle in Example [2| we
can compute

ZQF(P)po 1+z+322+32° +62% + -
peEN
1

(1—2)(1—a2)?’

a rational generating function! The following theorem says that these ideas are
— almost — equivalent.



Theorem 2. Given a function g : N — Q and the following three possible
properties:

A. g is a Presburger counting function,
B. g is a piecewise quasi-polynomial, and
C. ZpGN“ g(p)xP is a rational generating function,

we have the implications
A= B & C.

Remark 1. Proving Theorem [2] will give us much of Theorem [} using the fol-
lowing idea. A set S C Z? corresponds exactly to its characteristic function

(u) = 1 ifues,
=0 ifues.

If S is a Presburger set defined by F'(u), then
xs(u) =#{ceN: F(u) and ¢ = 0}
is a Presburger counting function.

In light of Theorem [1} we might wonder if there is a sense in which B = A.
Of course we would have to restrict g, for example requiring that its range
be in N (Theorem [1] essentially restricts the range of g to {0,1}, as it must
be a characteristic function). The implication still does not hold, however. For
example, suppose the polynomial

gls,t) = (t = 52)?

were a Presburger counting function given by a Presburger formula F(c, s, t),
that is,

g(s,t) = #{c e N?: F(c,s,t)}.
Then the set
{(s,t) eN?*: fc F(c,s,t)} = {(s,t) EN*: g(s,t) =0}
{(s,s%): s N}

would be a Presburger set. This is not the case, however, as it does not satisfy
Property 2 in Theorem I} If the parameter is univariate, however, the following
proposition shows that we do have the implication B = A.

Proposition 1. Given a function g : N — Q, if g is a piecewise quasi-polyno-
mial whose range is in N, then g is a Presburger counting function.

In Section |4} we prove Theorems 1| and [2[ (the proof of Proposition [I| appears
in the full version of this paper). In Section [2| we survey related work. In Section
we present the primary tools we need for the proofs. In the full version of this
paper, we also turn to computational questions; we survey known results, but
restate them in terms of Presburger arithmetic.



2 Related Work

Presburger arithmetic is a classical first order theory of logic, proven decidable by
Presburger [35]. Various upper and lower bounds on the complexity of decision
algorithms for the general theory have occupied the theoretical computer science
community, see [SIT72224|26/33].

A finite automata approach to Presburger arithmetic was pioneered in [T2J15],
and continues to be an active area of research (see, for example, [TOJT6I30/47]).
This approach is quite different from the present paper’s, but it can attack similar
questions: for example, see [34] for results on counting solutions to Presburger
formulas (non-parametrically).

The importance of understanding Presburger Arithmetic is highlighted by the
fact that many problems in computer science and mathematics can be phrased
in this language: for example, integer programming [31J40], geometry of num-
bers [13129], Grébner bases and algebraic integer programming [43J45], neigh-
borhood complexes and test sets [38/44], the Frobenius problem [37], Ehrhart
theory [7I21], monomial ideals [32], and toric varieties [23]. Several of the above
references analyze the computational complexity of their specific problem. In
most of the above references, the connection to Presburger arithmetic is only
implicit.

The algorithmic complexity of specific rational generating function problems
has been addressed in, for example, [TBI9I20127128]. Several of these results are
summarized in the full version of this current paper.

Connections between subclasses of Presburger arithmetic and generating
functions are made explicit in [3J4)5]. Connections between rational generating
functions and quasi-polynomials have been made in [2T[4T142], and the algorith-
mic complexity of their relationship was examined in [46]. Counting solutions
to Presburger formulas has been examined in [36], though the exact scope of
the results is not made explicit, and rational generating functions are not used.
Similar counting algorithms appear in [I4], and [I§] proves that the counting
functions for a special class of Presburger formuals (those whose parameters
p only appear in terms ¢; < p;) are piecewise quasi-polynomials. This current
paper is the first to state and prove a general connection between Presburger
arithmetic, quasi-polynomials, and rational generating functions.

Theorem 1| was originally proved in the author’s thesis [48]; in this paper, it
is put into context as a consequence of the more general Theorem [2] A simpler
geometric characterization of Presburger sets (equivalent to Property 2 of The-
orem [I)) was given in [25]: they are the semi-linear sets, those sets that can be
written as a finite union of sets of the form S = {ag + Zle n;a; : n; € N},
where a; € N%. Furthermore, if one takes these S to be disjoint and requires the
ai,...,ar to be linearly independent, for each S (as [25] implicitly prove can
be done, made explicit in [I8] as semi-simple sets), then each S can be encoded
with the rational generating function

x o
(= af) (- a")




and we obtain a slightly different version of 2 = 3 in Theorem [I] There seems
to be no previous result analogous to 3 = 2.

3 Primary Background Theorems

Here we detail several tools we will use. The first tool we need is a way to simplify
Presburger formulas. As originally proved [35] by Presburger (see [33] for a nice
exposition), we can completely eliminate the quantifiers if we are allowed to also
use modular arithmetic.

Definition 7. An extended Presburger formula is a Boolean formula with vari-
ables in N expressible in the elementary language of Presburger Arithmetic ex-
tended by the mod k operations, for constants k > 1.

Theorem 3. Given a formula F(u) in extended Presburger arithmetic (and
hence any formula in Presburger arithmetic), there exists an equivalent quanti-
fier free formula G(u) such that

{fueN?: F(u)}={uecN: G(u)}.

For instance, the set from Examplecan be written as (u > 1 and «w mod 2 = 1).
Next, we give two theorems that tie in generating functions. The first gives us
a way to convert from a specific type of Presburger set to a generating function.

Theorem 4. Given a point A\ € Z%, a lattice A C Z2, and a rational polyhedron
P C R‘éo, f(P NN+ A); w) (as given in Deﬁm‘tion@ is a rational generating
function.

The first step to proving this is to use Brion’s Theorem [11], which says that
the generating function can be decomposed into functions of the form f(K N
(A+ A); x), where K is a cone. Then, one can notice that integer points in cones
have a natural structure that can be encoded as geometric series.

Example 3. Let K C R? be the cone with vertex at the origin and extreme rays
u = (1,0) and v = (1,2). Using the fact that the lattice (uZ + vZ) has index 2
in Z2, with coset representatives (0,0) and (1,1), every integer point in K can
be written as either (0,0) + Aju+ Aow or (1,1) + Aju + A\yv, where A1, Ay € N.
Therefore

FIENZ%x) = (xO9 £ xED) 1 4 x" + x4 )1 +x¥ +x2 + )
X(O#O) +X(1’1)
(1 —xu)(1 —xv)’

See [2, Chapter VIII], for example, for more details.

Next, we would like to be able to perform substitutions on the variables in
a rational generating function and still retain a rational generating function;
particularly, we would like to substitute in 1’s for several of the variables.



Theorem 5. Given a rational generating function f(x), then

g(z) = f(zl17zl27"'7zld)’

with 1; € N*, is also a rational generating function, assuming the substituted
values do mot lie entirely in the poles of f. In particular, substituting in x; =
20 =1 yields a rational function, if 1 is not a pole of f.

The proof is immediate: if substituting in 2; = 2! would make any of the

binomials in the denominator of f zero (when f is written in the form from
Definition , then that binomial must be a factor of the numerator (or else such
z! would lie entirely in the poles of f); therefore, substituting in z; = 2% yields
a new rational generating function.

Finally, we need a connection between Presburger formulas and quasi-poly-

nomials. This is given by Sturmfels [42]:

Definition 8. Given aq,...,aq € N, the vector partition function g : N* — N
1s defined by

g(p) = #{(\1,..., M) €N p=Xiai + -+ N\aaal,
that is, the number of ways to partition the vector p into parts taken from {a;}.
Theorem 6. Any vector partition function is a piecewise quasi-polynomial.

See [6] for a self-contained explanation utilizing the partial fraction expansion
of the generating function

P _ 1 .
Z 9(p)x” = (1 —xa1)... (1 —xad)’

pENn

this equality can be obtained by rewriting the rational function as a product of
infinite geometric series:

(14 x% +x29 4 ) oo (14 x4 x2% 4.0,

4 Proofs

4.1 Proof of Theorem [2]

A=C.

Given a Presburger counting function, g(p) = #{c € N? : F(ec,p)}, we
first apply Presburger Elimination (Theorem [3)) to F' to obtain a quantifier free
formula, G(e,p), in extended Presburger arithmetic such that g(p) = #{c €
N¢: G(e,p)}. Integers which satisfy a statement of the form

aipy + -+ anPp + apyic1 + -+ appdca = ao (mod m)



are exactly sets A + A, where A € Z"T? and A is a lattice in Z"*. Since G(c, p)
is a Boolean combination of linear inequalities and these linear congruences, we
may write the set, S, of points (¢, p) which satisfy G(c, p) as a disjoint union

k
S=JPnMi+4),
=1

where, for 1 <i <k, P; C R’;‘gd is a polyhedron, A; is a sublattice of Z"*%, and
\; is in Z"*T4. (To see this, convert the formula into disjunctive normal form:;
each conjunction will be of this form P; N (\; + A;); these sets may overlap, but
their overlap will also be of this form.)

Let S; = P, N (\; + A;). By Theorem {4 we know we can write f(S;;y,x) as
a rational generating function, and so

f(Siy.x Zf Siy.X) > vexP
(ep): Glep)

can be written as a rational generating function. Finally, we substitute y =
(1,1,...,1), using Theorem [5| to obtain the rational generating function

Y #{ceN: Gle,p)ixP =) g(p)xP

C=B.
It suffices to prove this for functions g such that 3 g(p)xP is a rational
generating function of the form

(1 —x91)(1 —x%2)--- (1 —x9)’

where ¢ € N™, a; € N™\ {0}, because the property of being a piecewise quasi-
polynomial is preserved under linear combinations. Furthermore, we may take
g =(0,0,...,0), because multiplying by x7 only shifts the domain of the function
g. Expanding this rational generating function as a product of infinite geometric
series,

Zg XP = (14 X% +x°% 4o ) (14X 4 X7 4 ),

and we see that

g(p) = #{(A1,. -, ) € NF:p=Xay + o+ Apag}

This is exactly a vector partition function, which Theorem|[6]tells us is a piecewise
quasi-polynomial.

B=C.



Any piecewise quasi-polynomial can be written as a linear combination of
functions of the form

(p) = p* ifpe PNn(A+A4),
9P = 0  otherwise,

where @ € N*, P C RZ is a polyhedron, A € Z", and A is a sublattice of Z".
Since linear combinations of rational generating functions are rational generating
functions, it suffices to prove it for such a g. Let ¢;;, for 1 <i <nand 1 < j < ay,
be variables, and define the polyhedron

Q= {(p, c) c Nrtarttan .
pe Pandl <y <p;forall ¢}

This @ is defined so that #{c: (p,c) € Q} is pi* ---pi» = p* for p € P (and
0 otherwise). Using Theorem 4] we can find the generating function for the set
QN (A+A) as arational generating function. Substituting ¢ = (1,1,...,1), using
Theorem [5} gives us > g(p)xP as a rational generating function.

4.2 Proof of Theorem 1

Given a set S C Z?, define the characteristic function, ys : N® — {0,1}, as in
Remark [1} Define a new property:

2'. xs is a piecewise quasi-polynomial.
Translating Theorem [2| into properties of S and xg, we have
1= (2 & 3).

So we need to prove 2 = 1 and 2/ = 2.

2=1

This is straightforward: the property of being an element of A + A can be
written using linear congruences and existential quantifiers, and the property of
being an element of P can be written as a set of linear inequalities.

2 = 2.

Since xg is a piecewise quasi-polynomial, it is constituted from associated
polynomials. Let us examine such a polynomial ¢(p) that agrees with xs on
some P N (A + A), where P C R%, is a polyhedron, A € Z", and A a sublattice
of Z". Tt suffices to prove that 2 holds for SN PN (X + A), since S is the disjoint
union of such pieces.

Ideally, we would like to argue that, since ¢ only takes on the values 0 and 1,
the polynomial ¢ must be constant on P N (A + A), at least if P is unbounded.
This is not quite true; for example, if

P:{(x,y)eRzz xZOandOSygl},



then the polynomial g(x,y) =y is 1 for y =1 and 0 for y = 0.

What we can say is that ¢ must be constant on any infinite ray contained in
PN (A+A): if we parametrize the ray by x(¢) = (z1(¢),- -+ , x, (1)), then ¢(x(t)) is
a univariate polynomial that is either 0 or 1 at an infinite number of points, and
so must be constant. Inductively, we can similarly show that ¢ must be constant
on any cone contained in P.

Let K be the cone with vertex at the origin

K={yeR": y+PC P}

Then K is the largest cone such that the cones x + K are contained in P, for
all x € P; K is often called the recession cone or characteristic cone of P (see
Section 8.2 of [39]), and the polyhedron P can be decomposed into a Minkowski
sum K + @, where Q is a bounded polyhedron. We can write PN (A + A) as a
finite union (possibly with overlap) of sets of the form

Qj:(vj+K)m()‘+A)v

for some v;, and on each of these pieces ¢ must be constant. If g is the constant
1 on Qj, then Q; is contained in S, and if ¢ is the constant 0, then none of Q;
is in S. Since S is a finite union of the appropriate );, S has the form needed
for Property 2.
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