
AdaM and GrahaM Play the Stock Market

ADAM: Check out this promising stock. Half of the years that you hold it, its
value will increase by 90%. Careful: in the other years, it will decrease by 50%.

GRAHAM: Not a great buy. Half the time it less than doubles, and half the
time its value is cut in half. Sounds like a losing proposition.

ADAM: But think mathematically. The average “wealth factor” (amount your
investment will be multiplied by) will be (1.9 + 0.5)/2 = 1.2. A 20% gain!

GRAHAM: That’s not the right perspective. I’ll hold this stock for many
years, and wealth factors will multiply. We should use the geometric mean,√
1.9 · 0.5 ≈ 0.975. In the long run, I’ll probably lose 2.5% per year. No good!
ADAM: Then don’t put all of your money in the stock. Keep 5/9 of your

wealth in the bank each year, and invest the other 4/9. In a good year your wealth
factor will be 5/9 + 4/9 · 1.9 = 1.4, and in a bad year your wealth factor will
be 5/9 + 4/9 · 0.5 ≈ 0.78. Now the geometric mean is

√
1.4 · 0.78 ≈ 1.043

per year. Sounds good to me!

THE MATH: Let the wealth factor in Year i be Xi, an independent and iden-
tically distributed copy of some nonnegative random variable X . If we hold the
stock for n years, our total return is X1 · · ·Xn. Since E[X1 · · ·Xn] = E[X]n

(using independence), AdaM suggests we be happy if E[X] > 1. However, this
perspective overemphasizes large, but rare, returns. Taking his stock as an ex-
ample,X1 · · ·X10 has expected value 1.210 ≈ 6.19 and maximum 1.910 ≈ 613,
but median only 0.55 · 1.95 ≈ 0.77, and it loses money with 62% probability.

Instead, consider the quantity r = ln(X1 · · ·Xn)/n. SinceX1 · · ·Xn = ern,
r is analogous to a continuously compounded rate of return. Because we have
r = (lnX1 + · · · + lnXn)/n, the law of large numbers implies, for large n,
that r will probably be close to E[lnX]. Using this reasoning, GrahaM would
favor an investment if E[lnX] > 0. But if we only invest a small ε fraction of
our wealth each year (and keep the rest in the bank), then the wealth factor in
Year i will be (1− ε) + εXi, and so we want

0 < E[ln(1− ε+ εX)] ≈ E[−ε+ εX] = ε(E[X]− 1).

That is, we want E[X] > 1 after all! Since ln E[X] ≥ E[lnX] (Jensen’s in-
equality, using the concavity of lnx), AdaM is more likely than GrahaM to find
an investment attractive. Note that this generalizes the AM-GM inequality: if X
is uniformly distributed, then E[X] is the arithmetic mean of the possible wealth
factors, and eE[lnX] is the geometric mean. AdaM’s proposal to use ε = 4/9
maximizes expected log return; several information theory texts (see Chapters 6
and 16 of [1], for example) investigate this approach to gambling and investing.
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