Problems for Math 342: The Mathematics of Social Choice, Fall 2017

1. Suppose we have some number n of voters, each ranking three candidates x, y, and z.

(a) The instant runoff assigns a Social Ranking as follows: the candidate with the
fewest number of first place votes is third (for simplicity, assume there are no ties),
and that candidate is eliminated. We eliminate that candidate from everyone’s
individual ranking, and recalculate first place votes; the winner is the one with
the most votes. For example, if candidate y has the fewest 1st place votes, then
everyone who has y as their first choice transfers their vote to their second choice,
and we have a majority election between z and z.

i. Does the instant runoff social ranking have the Pareto property (if every voter
prefers = to y, then society prefers x to y)? Briefly prove or give a counterex-
ample. Hint: To create counterexamples, it is often helpful to list some possible
rankings (like x > y > z) and how many people vote with that ranking.

ii. Does the instant runoff have Independence of Irrelevant Alternatives (if z moves
up or down in some voters’ rankings but x and y keep the same relative order
to each other in each voters’ ranking, then x and y keep the same relative order
in the social ranking)? Briefly prove or give a counterexample.

(b) The antiplurality voting system chooses the least hated candidate, as follows: the
Social Ranking ranks people higher who have fewer third place votes (again, assume
no ties).

i. Does the antiplurality social ranking have the Pareto property? Briefly prove
or give a counterexample.

ii. Does the antiplurality vote have Independence of Irrelevant Alternatives? Briefly
prove or give a counterexample.

2. Suppose we have some number n of voters, each ranking three candidates x, y, and z.

(a) Give an example of a preference profile (the collection of rankings for all n voters),
for an n of your choice, such that:

e Candidate z is the sole first choice under the plurality vote (defined in class),

e Candidate y is the sole first choice under the Borda count (defined in class),
and

e Candidate z is the sole first choice under the instant runoff (from the previous
problem).

(b) Looking at your preference profile from part (a), who do you think “should” win
the vote, and why? (There’s no right answer here.)

3. In an auction, each agent i has a (perhaps secret) valuation, v;, for an object. The
agent’s utility from the result of the auction is 0 if they don’t get the object and v; — p if
they get it and have to pay p. In the second-price auction with bids by, ..., b, the agent
with the highest bid wins the object (for simplicity, assume there are no ties) and pays
the second highest bid. Prove that, no matter what b,,...,b, are, agent 1 can have no



utility higher than she would get if she bids exactly v;. Please prove this carefully; I
suggest some precisely-stated cases. Hint: think of the bs,...,0b, as fixed, and consider
what utility agent 1 might get from various bids b;. (Of course, the statement holds for
all agents, not just agent 1, so it is in everyone’s best interest to bid their valuation, no
matter what other people bid).

4. Assume three candidates, B(ush), G(ore), and N(ader) are in an election (on the political
spectrum, G is in between the other two). Assume an agent’s preferences are completely
based on where she is on the political spectrum. In particular, anybody who has N as
her first choice must be more left-wing than G, and so must be way more left-wing than
B, and therefore she must have G as her second choice and B as her third; similarly,
anybody who has B as her first choice must have G as her second and N as her third.
Assume there are an odd number of agents (this is to prevent ties).

(a) Assume people vote their true preferences (in particular, no one votes N>B>G or
B>N>G). Prove that there is always a Condorcet winner (an alternative that wins
a head-to-head majority election against any other opponent).

(b) Suppose people only vote for their first choice (so you don’t get to see who their
second or third choices are). Design a system, using only that information, for
figuring out who the Condorcet winner is (and prove it works). You are allowed to
use particularities of the situation, e.g., that G is between B and N on the spectrum.

(c) Is your voting system in part (b) strategy-proof? That is, does any agent ever have
an incentive to lie about their first choice? Prove or give a counterexample.

5. Suppose we have some number, n, of voters choosing one of three candidates from
X ={z,y,z}.
(a) Give an example of a preference profile (set of votes), for an n of your choice, such
that the following all hold simultaneously:
e Candidate x is the sole first choice under the plurality vote,
e Candidate y is the sole first choice under the Borda count, and
e Candidate z is the Condorcet winner (wins head-to-head against z and wins
head-to-head against y).

Two bonus points for whoever can do it with the smallest number of voters, n.

(b) Looking at your preference profile from part (a), who do you think “should” win
the vote, and why? Write a paragraph or so defending your choice.

6. For this question, it is more convenient to think about the Reduced-Borda count, which
is equivalent to the Borda count: If there are k candidates and n voters, a voter’s first
place choice gets k — 1 points, second place gets k — 2, ..., kth place gets 0; this is one
less than their normal Borda points, for each voter (so each candidate will get n fewer
points in all). The winner is the person with the highest total Reduced-Borda count,
and the winner is the same as in the normal Borda count.

(a) Prove that the average Reduced-Borda score among the k candidates is n(k —1)/2.
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(b) For a voter ¢ and candidates x and y, define

Pia.y) 1 if voter ¢ prefers x to y
i\, = .
Y 0 otherwise

Give an equation relating a candidate a’s Reduced-Borda count to these Pi(z,vy)
functions (you’ll use various i, z, and y in the formula).

(c) Suppose that candidate a is the Condorcet winner. Prove that their Reduced-Borda
count is larger than the average, n(k — 1)/2.

(d) Suppose we use the following instant runoff voting system:

e (Calculate the Reduced-Borda counts of all of the candidates.

e Remove the candidate who has the smallest count (for simplicity, assume there
are never ties).

e Recalculate all of the Reduced-Borda counts for the remaining k£ — 1 candidates
(e.g. if voter 1 had b >; ¢ >; a originally and c is removed, their new preference
is b >1 a).

e Again, remove the candidate with the smallest count.

e Continue until there is only one candidate remaining.

Prove that, if there is a Condorcet winner, then they win under this Borda-Instant-
Runoff system.

7. We say that a Social Choice function (electing a single winner) is monotone if, whenever
a candidate z is currently winning, « still wins if some voter(s) move x up in their
rankings but leave the relative order of the other candidates the same (e.g., if a voter
has y > z > x they can change their vote to z > y > z but not to x > z > y). For each
of the following election systems, either briefly prove that it is monotone or provide a
counterexample.

(a) Plurality.
(b) Borda.
(c) Instant Runoff.

8. Suppose we have n agents, numbered 1 through n, and k identical cookies, with £ < n.
We will create an auction where each agent gets at most one cookie. Suppose that 6;
is agent ¢’s valuation for getting a cookie. Assume that all ; are distinct and positive
(this prevents ties). Given a subset S C {1,...,n} with |S| < k, let dg be the decision
where each agent in S gets a cookie (we allow |S| < k in case not all of the cookies are
given out). Let D ={ds: S C {1,...,n}, |S| <k} be the set off all of these possible
decisions.

To clarify notation, I suggest assuming (without loss of generality) that 6; > 0y > -+ >
0,. We discussed in class that a reasonable auction might give a cookie to agents 1
through %k and charge them 6;.,. We carefully show here that this is what the Clarke
Pivot mechanism does, following the notation from Lecture 7:
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(a) For each agent i and decision dg, give a formula for v;(dg, 6;).
(b) Carefully compute the efficient decision function d(©).
(c) For each agent i, carefully compute the ¢;(©) given by the Clarke Pivot mechanism.

9. If >; and >, are two rankings of candidates, we define the Kendall-tau distance between
the rankings to be the number of pairs of candidates such that >; and >, disagree about
that pair, that is,

d(>1,>2) = # pairs {a,b} : (a>1 band b >3 a) or (b > a and a >3 b).

For example, d(a >1 b >1 ¢, ¢ >3 b >3 a) = 3, because the voters disagree about their
preferences for each pair of candidates: {a, b}, {a,c}, and {b,c}. If > is a ranking, and
V is a set of rankings (think of > as a possible social ranking and V as the set of votes),

then define
d(>,V) =) d(>>).
>€V
We want the social ranking we decide on to be as close as possible to the set of votes,
so given a set of votes V, define the Kemeny- Young social ranking to be the ranking >
minimizing d(>,V). Note this selects a full ranking of the candidates; you can simply
define the winner as the first place in the ranking.

(a) We say that a social ranking system is consistent if, whenever one set of voters V
selects a social ranking > and a disjoint set of voters V' selects the same ranking
>, then combining the votes together into V U V' still selects >. Prove that the
Kemeny-Young social ranking is consistent.

(b) Suppose that > and >’ differ only by switching two adjacent candidates (call them
aj and a;41), that is
ap > ag > -+ >ap and
ai >/ a9 >0, aj—1 >/ Q41 >/ a; >/ Qaj+2 >/ aj+3 >/ ag.
i. Given a single vote >;, how do d(>, >;) and d(>',>;) differ?
ii. Given a set of votes V, how do d(>,V) and d(>',V) differ?

(c) Prove that, if there is a Condorcet winner, then the top candidate in the Kemeny-
Young social ranking is the Condorcet winner.

(d) Philosophical Question: One can prove that the Kemeny-Young social ranking is
the unique system that is consistent, elects the Condorcet winner (when there is
one), and treats all voters equally (symmetrically). What do you think of that?

10. (10 points) Consider the following indirect mechanism for auctioning off k identical cook-
ies, in the situation where people may want more than one cookie (and each person has
decreasing marginal utility, as in the example in Lecture 8). We start at price p = 0 and
slowly raise the price; person ¢ holds up k; fingers, if they would want to buy k; cookies
each at price p, but not k; 1, that is

marginal utility of k;th cookie > p > marginal utility of k;,st).
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11.

Assuming that ) . k; > k, we continue to slowly raise the price. The k;’s will decrease
as p rises, and eventually, we will have ). k; = k exactly (assume there are no ties in
valuations, so the sum will never decrease by 2 or more at once). Then person i gets k;
of the cookies, and they all pay p per cookie.

(a) This indirect mechanism seems like the most likely auction you would come up with
if you were designing one. It is not equivalent to the Ascending Price mechanism
from class, because here all of the cookies go for the same price, and we saw that
wasn’t true for the example in class. Use some of our big Theorems from Lectures
9 and 10 to show that this new mechanism cannot be strategy-proof.

(b) Using k = 4 and the example types from class
0; =(10,8,6,1), 6;,=1(9,7,2,0), 6Ox =(5,4,3,0),
explicitly show how someone might strategize to get a better outcome.

(15 points) This problem goes on forever (or at least onto the next page). You and your
roommate, Sam, are deciding whether to buy a fancy coffee maker for your house/room.
It cost 100 dollars (fancy!). Each of you have a (perhaps secret) amount of your own
money that you are willing to pay to get the machine. Call these amounts ¢, and 6, for
you and Sam, respectively. For example, if 6; = 6, = 60, then you could both pay $50,
and you would each gain 60 — 50 = $10 in utility.

(a) Suppose you are willing to pay $40 and Sam is willing to pay $80. Should you get
the machine? Philosophical question: what’s a “fair” price for each of you to pay?

(b) Suppose you agree on the following mechanism: you simultaneously reveal how
much you are willing to pay, say b; and by (for you and Sam, respectively). If
by + by > 100, you buy the machine, you yourself contribute p; = 1000 /(b1 + b2),
and Sam contributes py = 100b2/(by + b2). Nothing stops you from lying (having
by # 01). Note: p; + py = 100, so this exactly pays for the machine.

Is this mechanism strategy-proof? That is, no matter what 6; and b, are, is bidding
by = 0, at least as good as any alternative bid? To be clear, if you don’t buy the
machine, then your utility is 0, and if you do buy it, then your utility is 6; — p;.

Next let’s translate this problem into the language of the VCG mechanism. To do this,
we need to internalize the cost of the machine: assume that, by default, the $100 cost
will be split evenly (transfers can alter this baseline), so

That is, losing that $50 is considered a part of the decision, separate from any transfers
that may happen. On the other hand,

Ui(NO BU?J, 61) - 07

because this is the baseline zero utility of nothing happening. Let d(©) be the efficient
decision function. Be careful in these problems to do the calculations based on the
formulas for v;, rather than your intuition.
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(c) What is d(0), as a function of © = (6y,605)?

(d) Let’s try a VCG mechanism... we just have to figure out which one is most reason-
able. You could try the Clarke Pivot mechanism, though you would find that it is
not individually rational (you might be forced to pay more than you are willing to,
when buying the coffee maker). Instead, let’s specify particular h;(6_;), rather than
the one specified by the pivot mechanism. Let’s take the VCG mechanism that has

hl(eg) == hg(el) == 0

i. As a function of © compute ¢;(0) and your net utility ¢;(0) + v1 (d(©), 6,),
ii. Prove this mechanism is individually rational.

iii. Examine the case where 6; = 40 and 6, = 80. What are ¢; and 57 Including the
$50 that we assumed each payed by default, how much do each pay? Individual
rationality holds, but what’s the problem now?

(e) Philosophical question: suppose y’all have a kitty of $200 already set aside for
household expenses, but still run the mechanism in part (d) and contribute money
based on it; the kitty simply pays the shortfall, if there is any. What a great way
to handle this problem of a possible shortfalll You yourself really, really want a
stand mixer to bake cookies for your Math 342 class, and y’all might run a similar
mechanism in a few days to decide whether to buy it. Does this affect your strategy?

12. (5 points) Either demonstrate a perfect matching (every vertex gets matched to some
other one) in the following graph or prove that no such matching exists. Hint: This is
a bipartite graph, though not drawn that way. From class, we've seen that a proof that
no such matching exists can be short and sweet (and we've even seen an algorithm for
finding that proof)! I'm giving you a bunch of copies of this graph at the end of the
problem set, to play around with.
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13. (a)

We're in the matching with money context. Suppose we have n buyers and n items
to sell, and suppose every buyer agrees on the valuations of each item (but each
item is different). That is, for each item j, there is some v; such that v;; = v; for
all buyers 1.

i. Describe the steps the Ascending Price mechanism will go through, and the
final payments, p;.
ii. Describe the set of all prices (p1,...,p,) that are stable.
We're again in the matching with money context. Suppose we have k < n identical
items to sell (but, in contrast to part (a), the buyers disagree about their valuation),
and n — k& dummy items valued at 0 by everyone. That is, for each buyer ¢, there
is some v; such that v;; = v; for 1 < j <k, and v;; =0for k+1<j <n.
i. Describe the steps the Ascending Price mechanism will go through, and the
final payments, p;.
ii. Where have we seen this outcome before?
iii. Describe the set of all prices (p,...,p,) that are stable.

14. We're in the matching with strict preferences, but no money, context. Assume we have

3 men (A,B,C) and 3 women (R,S,T).

(a)

(b)
(c)
(d)

Give an example of a set of preferences for which there is exactly 1 stable matching.
Hint: The shorter the preference lists (the more people who are unacceptable), the
easier it is to prove stability.

Give an example for which there are exactly 2 stable matchings.
Give an example for which there are exactly 3 stable matchings.

Bonus: I think there cannot be more than 3 stable matchings in this situation, but
don’t have a simple proof. Can you prove or disprove it?

15. We'’re in the matching with money context, and the free-for-all auction described on
page 75 of the notes: The first person to bid on any cookie bids 0; any buyer who is
not currently winning a cookie may bid ¢ over the current bid for a cookie; and bidding
continues until no one wants to bid. Assume that a player will always bid on a cookie
that maximizes their net utility, at current prices.

(a)

Prove that, until the very end of the auction, there are still cookies that have not
been bid on (Hint: if m cookies have been bid on so far, how many buyers are allowed
to make a bid?). Therefore the last cookie to be bid on (perhaps a dummy one)
will go for free, and we can assume that everyone ends up with a cookie (because
anyone is willing to take a free cookie).
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Let g be the price vector at some point in the auction, with corresponding matching i,
(this might not yet be a perfect matching). Let p be the price vector from the Pivot rule
/ Ascending price mechanism that we have been discussing in class, with corresponding
perfect matching f1,. Let k£ be the number of non-dummy cookies (the only ones that
could possibly go for positive amounts). We say that buyer i’s unhappiness level, u;, is
how much worse off they are with (g, it,) as opposed to (p, u,); that is

Ui = Vipy (i) — Pup(i)) — Wing(i) — Qua(i))-

We say that a cookie j is overpriced by the amount c if ¢; — p; = c¢. We want to prove
that no cookie will ever be > 2ke overpriced (the proof that no cookie will end up > 2ke
underpriced is similar), and therefore this free-for-all auction gives a similar result to the
more complicated version.

(b) Suppose a cookie j is ¢ overpriced, with p,(¢7) = j. Prove that
i. 2 has unhappiness level > c.

ii. p,(i) is > ¢ — € overpriced. Hint: when buyer ¢ bid on cookie p,(7), that was
the best bid they could make, at the time.

(c) Seeking a contradiction, assume some cookie j is > 2ke overpriced.

i. Find 2 cookies that are each > 2(k—1)e overpriced, either now or as the auction
continues. Hint: You’ll need 2 cases, depending on whether the buyer ¢ with
tq(7) = j also has p,(7) = j or not.

ii. Find 3 cookies that will now or shortly each be > 2(k — 2)e overpriced.

iii. Continuing this process, find a contradiction.

16. We're in the matching with strict preferences, no money, context.

(a) Prove that the set of men and women who are matched is the same for any stable
matching. Hint: Let uj; be the matching in the men-propose mechanism, and let
it be another stable matching. Let M; and M, be the set of men who are matched
in pups and p, respectively. What can you more easily prove about how M; and M,
are related? What about for the women matched in pj; and p?

(b) Let f be a stable matching mechanism. That is, f is a function mapping a preference
profile (list of everyone’s preferences) to a matching that is stable for that profile
(and that is all we are given about the output of f). Let P be the true preference
profile, and suppose f(P) = p. If u # pw, prove that some woman has the incentive
to lie about her preferences, that is, if she lies about her preferences and creates a
new preference profile P’, she can lie in such a way that she prefers f(P’) to f(P).
Hint: one way to lie would be to truncate her preferences (say that the men below
a certain point on her list are unacceptable when they are, in fact, acceptable).
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17. We're in the matching with strict preferences, no money, context. Use any number of
men and women you’d like, though I suggest 4 each.

(a) Give an example of preferences, where there are at least four distinct stable match-
ings, pw, f1, p2, and gy, where some women prefer pq to ps and some women
prefer s to puy.

(b) Give an example of preferences, where there are at least four distinct stable match-
ings, puw, M1, t2, and ppr, where every woman is at least as happy in pq as ps.

Hint: I've found that limiting (as much as possible) the number of people that people
find acceptable to be helpful in limiting the amount of craziness.

18. We are in the matching with strict preferences, no money, context.

(a) Let P be a set of preferences, with n men my, ..., m, and n women wy, ..., w,. As-
sume no one finds anyone unacceptable. Let’s look at 2n men myq, ..., my,, Moy, ..., Moy
and 2n women wiy, ..., Wi,, W1, . .., Ws,, and create preferences P’ among them.
First we’ll state the preferences precisely, and then a little more intuitively. Say
that m,; prefers wy, to w, if either:

e k =r and m; prefers wy to w, in P, or
e k=1dandr #i,
and w;; prefers my, to m,, if either:
e k =r and w; prefers my to m, in P, or
e k#iandr=i.
That is,
e BEvery m;; has the same preferences on the wy, as m; did on the wy, and the
same preferences on the wy, as m; did on the wy,
e Similarly for the women,
e Every my; prefers all of the wy, to all of the wss, and every my; prefers all of
the wyy to all of the wq,, and
e Every wy; prefers all of the my, to all of the my,, and every ws; prefers all of
the mq, to all of the mao,.

Suppose there are N stable matchings under P. Construct 2N? stable matchings
under P’ (you only need briefly prove they are stable).

(b) Prove that, for all n = 2¥ with k a nonnegative integer, there is some preference
ordering P for n men and n women with at least 2"~! stable matchings. That’s a
lot of stable matchings!

19. Let’s examine the first-price auction with n agents, generalizing what we did with n = 2
agents on Friday 10/27. Assume that agent i values the object at some ©; chosen
uniformly at random from [0, 1], and that each agent’s valuation is independent.
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20.

21.

22.

(a) Suppose agents 2 through n follow the strategy of bidding exactly their valuation
;. Compute what bid b(6;), as a function of 6, agent 1 should make to maximize
his expected utility, when his valuation is ©; = 6;. Hint: the proof for n = 2 can
be followed fairly closely.

(b) Assume agents 2 through n follow the bidding strategy b(0;), where b is the bidding
function you computed in part (a). Prove that agent 1 should also bid b(6;), when
©; = 64, in order to maximize his expected utility. (That is, it is a Bayesian Nash
Equilibrium.)

Suppose we have an auction with n agents, where (as in problem 1) agent i values the
object at some O; chosen uniformly at random from [0, 1], and that each agent’s valuation
is independent. For each of the following random variables X, compute the cumulative
distribution function F(z) = P(X < z) and the density function f(z) = F'(z).

(a) X = maxz(@l)
(b) X = min,;(6;). Hint: first compute P(X > x).
(¢) X = the second highest value from among the ©;.

Suppose we again have an auction with n agents, where agent ¢ values the object at
some O; chosen uniformly at random from [0, 1], and that each agent’s valuation is
independent. We will compute the expected revenue for the seller in both the first and
second price auction.

(a) For the first price auction, assume every agent bids following the (Bayesian Nash
Equilibrium) bidding strategy b(-) you calculated in problem 1. Calculate the ex-
pected revenue for the seller in this case.

(b) For the second price auction, assume every agent follows their dominant strategy
and bids exactly their valuation ©;. Calculate the expected revenue for the seller.

Assume we have 2 bidders with respective valuations ©; and O, for a cookie, and ©;
and O, are i.i.d. uniform [0, 1]. Suppose the auctioneer announces it will be a second
price auction with reserve price r (r is known to everyone at the time of bidding). That
is, if neither agent bids at least r, neither gets the cookie; otherwise, the highest bidder
gets the cookie and pays the greater of r or the second-highest bid.

(a) Briefly show that bidding your true valuation is strategy-proof.

(b) Compute m(6;), the (interim) expected payment for Agent 1, if ©; = 6; (but O is
unknown); this will be a function of #; and r. (Careful: your final answer should
be a piecewise defined function of 6y, and that will be important in part (c)).

(c) Compute the (ex ante) expected revenue for the auctioneer; this will be a function
of r only.

(d) What reserve r should the auctioneer set in order to maximize (ex ante) expected
revenue?
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23.

24.

Assume we have 2 bidders with valuations i.i.d. uniformly at random from [0, 1]. Suppose
the auctioneer announces it will be a first price auction with reserve price r (r is known
to everyone at the time of bidding). That is, if neither agent bids at least r, neither gets
the object; otherwise, the highest bidder gets the object and pays their bid. Consider

the bidding strategy,
0 if ®z <r,
b(@z) = N r21+02 .
20, L, if @z 2 r

(a) Prove that b(0) is increasing, for r < 6 <1,

(b) Prove that b(-) is a Bayesian Nash Equilibrium. Hint: I think it’s easiest to use the
trick from Unit 24 where you write a potential bid b* as b* = b(¢)), for some 1.

(c¢) Given ©1 = 6; and both agents are following the above strategy, compute m(6), the
interim expected payment of Agent 1. If you did this and Problem 1(b) correctly,
you’ll notice a suspicious similarity.

(d) Compute the (ex ante) expected revenue of the seller, when the buyers follow this
strategy. If you did this and Problem 1(c) correctly, this might feel repetitive.

Coffee makers, aka, public goods (if bought, everyone gets the utility of using it). Don’t
forget that you can use WolframAlpha/Mathematica. Suppose two roommates have
respective valuations ©; and O, for an object, and ©; and ©, are i.i.d. uniform [0, 1].

Suppose the object costs $1. If ©; + Oy > 1 and they manage to buy it, then the total
surplus is ©1 + Oy — 1; otherwise it is 0. I suggest paying careful attention to Units 25
and 26 when solving this problem.

(a) Suppose they somehow manage to truthfully state their valuations and buy the
object whenever ©; + ©5 > 1. What is the (ex ante) expected total surplus? (Of
course, there is no strategy-proof way to ensure this is achieved.) Hint: you may
want to first compute an interim expected surplus.

(b) Suppose we use the following mechanism: if they both say they value it for at least
0.5, they buy it and each pay 0.5. This is a strategy-proof mechanism. What is the
(ex ante) expected total surplus?

(c) Suppose we use the following mechanism: The roommates simultaneously name
prices by and by, respectively. If by + by > 1, then they buy it; roommate 1 pays

_b1+b2—1_b1—b2—|—1

b
1 9 2 )

and roommate 2 pays (bs — by + 1)/2; that is, they start by paying b; and by,
respectively, but each get back half of the extra money that this generates.

Consider the symmetric, linear bidding strategies b;(0;) = 20; + 5.

i. Prove that these strategies are a Bayesian Nash Equilibrium.

ii. Suppose both roommates follow this strategy. Compute the (ex ante) total
expected surplus.
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(d) How do your three (ex ante) expected surpluses for these three different mechanisms
compare?

These next six questions are philosophical questions. Please be sure you're doing some
minimal about of mathematics somewhere here, though! Come to class prepared to discus

25.

26.

27.

Alexis and Brenda are housemates. One day, they find a carton of 12 grapefruit and
12 avocados on their front porch. They need to divvy them up. Scientists are just now
realizing the crucial nature of vitamin F for your health, and grapefruit and avocados
are great sources of it. Alexis and Brenda’s health could really benefit from getting
some vitamin F. Both Alexis and Brenda had recently been to the doctor, who can do
amazing tests nowadays to determine your body’s ability to derive vitamin F from food.
They learned:

e Alexis can derive 100 mg of vitamin F from each grapefruit consumed, but no
vitamin F from avocado.

e Brenda can derive 50 mg of vitamin F from each grapefruit and 50 mg from each
avocado.

These stats are common knowledge to Alexis and Brenda. Both Alexis and Brenda are
strongly committed to getting as much vitamin F as they can. Other than that, neither
of them particularly like or dislike avocados and grapefruit.

(a) Assume Alexis and Brenda are good friends who want to do the “fair” thing when
dividing up the fruit carton. How should they do it?

(b) Assume Alexis and Brenda don’t really care for one another, but only care for how
much vitamin F they get individually. If they can’t agree on how to divvy up the
grapefruit and avocado, the fruit will sit there until they spoil. How do you think
they will end up splitting the carton?

Suppose that, instead of deriving 50 mg each from grapefruit and avocado, Brenda can
only derive 9.09 mg each. Repeat parts (a) and (b) under this new situation.

Alexis and Brenda decided it was less combative to just put the carton on the doorstep of
their next door neighbors, Carla and Deb, and see what they did with this free gift. Carla
and Deb don’t go in for any of this vitamin F crap. However, they do like grapefruit
and avocados, to varying degrees:

e Carla is quite fond of grapefruit and would pay up to $1 per grapefruit for as many
as you would sell her. She doesn’t like avocado and wouldn’t buy them at any price.
e Deb likes both grapefruit and avocado, and would pay up to $.50 each for as many

as you would sell her.

These stats are common knowledge to Carla and Deb. They also don’t want to pay each
other money (simply divide up the fruit), because money is gauche. Repeat parts (a)
and (b) under this new situation.
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28.

29.

30.

31.

Suppose that, instead of feeling grapefruit and avocado are worth $.50 each, Deb only
feels that are worth $.09 each. Repeat the previous parts (a) and (b) under this new
situation.

Carla and Deb also give up on this task, and pass the grapefruits along to Edith and
Felicity next door. Edith and Felicity are hard core economists with no compunction
against paying each other money for anything. They have the same values as the original
Carla and Deb:

e Edith is quite fond of grapefruit and would pay up to $1 per grapefruit for as many
as you would sell her. She doesn’t like avocado and wouldn’t buy them at any price.

e Felicity likes both grapefruit and avocado, and would pay up to $.50 each for as
many as you would sell her.

These stats are common knowledge to Edith and Felicity. Repeat parts (a) and (b)
under this new situation.

In a given auction, let m(0) be the ex interim expected payment of a player with valuation
©; = 0 (the player knows their own valuation 6 but does not yet know the other players
valuations) when all players are using some equilibrium betting strategy b(#). We proved
in class that, if the auction satisfies certain assumptions (particularly, the highest bidder
gets the object), then

m(6) = / gty d,

where ¢(t) is the density function of max{©,,...,0,} (the max valuation of everyone
else).

Assume we are in an all pay auction with n players, each with valuations independently
and uniformly at random from [0, 1]. That is, each player must pay their bid, but only
the highest bidder wins the object. Let b(#) be a symmetric equilibrium bidding strategy.

(a) Find an (easy!) equation relating b(#) and m(9).
(b) Use the previous part to get an explicit formula for b(6).

(c¢) Confirm that your answer is indeed a Bayesian Nash Equilibrium.

Let g; be the standard quota for State ¢ in an apportionment problem, that is,

G P _ PP

"ods v p
We say that an apportionment method has the lower quota property if it is always true
that, in the final apportionment,

a; > |qi] -
We say that an apportionment method has the upper quota property if it is always true
that, in the final apportionment,

ai < [qi].
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32.

33.

34.

35.

(a) Give an example to show that Webster’s method does not satisfy the lower quota
property. Hint: I found it helpful to make an excel spreadsheet so that I could play
with numbers without having to redo all of the calculations every time.

(b) Give an example to show that Webster’s method does not satisfy the upper quota
property.
(c) Show that Jefferson’s method satisfies the lower quota property.

Consider the following allocation method. We start with a; = 0 for all 7, that is, none
of the seats are yet allocated. We are going to allocate one seat at a time. To allocate
the first seat, let i be the state that maximizes Pi/(a;+1) across all states; give the seat
to state ¢, that is, increment a; by 1 (from 0 to 1, in this first example). To allocate
the second seat, again look at all of the states, take the state j maximizing ?i/(a;+1), and
increment a; by 1. Continue, seat by seat, until all h seats have been allocated. This
seems reasonable to do: the bigger ?i/(a,+1), the more of a claim state i has to the “next”
seat.

(a) Show that the final allocations a; are exactly those of Jefferson’s method. Hint:
Start by analyzing Jefferson’s method like we did for others in Unit 31. Then try
to prove by contradiction.

(b) How would you modify this method to give you Webster’s method?

FYI, Balinski and Young modified this version of Jefferson’s method to avoid upper
quota violations: simply don’t allow a state to get a new seat once a; = [¢;], where ¢;
is the standard quota. Like Jefferson’s original method, this still has the lower quota
property, so it in fact has the (entire) quota property. It’s also house monotone, because
of the way it allocates seats one at a time. We have not seen any other methods that
are both house monotone and satisfy the quota property.

Read the “Social Justice” chapter of The Theory of Choice: A Critical Guide, Hargreaves
Heap, et al., eds. I have posted this on Blackboard. Come on Friday 12/8 prepared to
discuss it. Think about how it relates to the stuff from the last few days. Come to class
having thought about it.

Write a 300-450 word essay (1 or so pages, double spaced) relating the “Social Justice”
chapter to something we’ve done this semester (e.g., voting, auctions, matching mech-
anisms, Nash bargaining,...). Don’t ramble, but rather have a specific thesis, backed
up with evidence (including some evidence of a mathematical nature). Because of the
limited space, your thesis will, by necessity, be limited; that’s fine. Your audience is
another member of this class who has been engaging in the same material.

What’s been your favorite topic in this class? Your least favorite?
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