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ABSTRACT11
Artin presentations are discrete equivalents of planar open book decompositions

of closed, orientable three manifolds. Artin presentations characterize the fundamen-13
tal groups of closed, orientable three manifolds. An Artin presentation also determines
a smooth, compact, simply conected four manifold that bounds the three dimensional15
open book. In this way, the study of three and four manifolds may be approached purely
group theoretically. In the theory of Artin presentations, elements of the Torelli subgroup17
act on the topology and smooth structures of the three and four manifolds. We show
that the Torelli action can preserve the continuous topological type of a four manifold19
while changing its smooth structure. This is a new, group theoretic method of altering
the smooth structure on a four manifold.21
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1. Introduction

In the theory of Artin presentations, a smooth, compact, simply connected25

4-manifold, with a connected boundary, is already determined by an Artin pre-
sentation of the fundamental group of its boundary [20, 7]. Thus, the study of the27

smooth structures of these 4-manifolds, a central problem of contemporary topology
and physics, and their Donaldson and Seiberg–Witten theories can be approached29

in a new manner. This approach is systematic, exterior, purely group theoretic, and
transcends the Tietze-like methods of the Kirby calculus as well as the more or less31

ad hoc interior surgery methods [18].
Elliptic complex surfaces, all of which have nontrivial Donaldson and Seiberg–33

Witten invariants, can be presented by Artin presentations [7]. Therefore, Artin
presentation theory (AP theory) assures the metamathematical existence of a non-35

trivial, discrete, purely group theoretic theory of Donaldson and Seiberg–Witten
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invariants. This is the beginning of a 4D analogue of such results already accom-1

plished in 3D AP theory, starting with González-Acuña’s remarkable formula for
the Rohlin invariant [12, 7] and its generalization to the Casson invariant [5].3

In AP theory, canonical subgroups of the Torelli groups (which are part of 2D
manifold theory) act on the topology and smooth structures of the 4D manifolds5

above. This raises the important question: can the Torelli action preserve the under-
lying topological structure but change the smooth structure of such a 4-manifold?7

The first aim of this paper is to show explicitly that this is possible. Discrete
Torelli group theory alone can “juggle” the smooth structures of a 4-manifold. In9

other words, pure algebra (in fact, just discrete finitely presented group theory, with
its computer approachable methods) influences the mathematically and physically11

important theory of smooth structures on simply connected 4-manifolds.
The second aim of this paper is to describe the general context into which these13

examples fit and to present a pertinent conjecture. The canonical knot and link
theory of AP theory is conjectured to correspond strongly with smooth invariants15

of the bounding 4-manifolds.
This paper is organized as follows. Sec. 2 contains an introduction to AP theory.17

Section 3 constructs the Artin presentations described above, Sec. 4 identifies the
common boundary of these Artin presentations, and Sec. 5 discusses the knot theory19

in these boundaries. Section 6 closes with open problems, a conjecture, and further
discussion of the Torelli action in AP theory.21

2. AP Theory Background

An Artin presentation r is, by definition, a finite presentation:23

〈x1, . . . , xn | r1, . . . , rn〉
satisfying the following equation in Fn (the free group on x1, . . . , xn):25

x1x2 · · ·xn =
(
r−1
1 x1r1

) (
r−1
2 x2r2

) · · · (r−1
n xnrn

)
(�)

Equation (�) is deceptively simple, yet it ties together automorphisms of Fn,27

pure braids, closed orientable 3-manifolds, knots and links therein, and smooth com-
pact simply connected 4-manifolds. The reader is referred to [20, 7, 4] for detailed29

proofs of statements made below.
Artin presentations arise naturally from homeomorphisms of Ωn, the compact31

2-disk with n holes, that are the identity on the boundary. Any such homeomor-
phism defines a unique Artin presentation. The converse, which is more interesting,33

is also true and was implicitly known to Artin himself in 1925 [3]. The main idea
runs as follows. Recall that Pn, the classical n strand pure braid group, has a faith-35

ful representation as a group of automorphisms of Fn. The group of isotopy classes
(rel ∂) of homeomorphisms of Ωn that are the identity on the boundary is canoni-37

cally isomorphic to Pn ×Zn (framed pure braids). An Artin presentation r induces
an endomorphism of Fn by xi �→ r−1

i xiri. Equation (�) is precisely the condition39
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required to ensure this endomorphism of Fn is a pure braid automorphism. The1

Artin presentation r also defines (ai) ∈ Zn by ai = exponent sum of xi in ri. In
this way, r determines h(r), a unique (up to isotopy rel ∂) self homeomorphism3

of Ωn that is the identity on the boundary, which is the same as a framed pure
braid β(r). Hence, Rn, the set of all Artin presentations on n generators, forms a5

group canonically isomorphic to Pn × Zn. Note that the group composition law in
AP theory can be defined purely group theoretically with no mention of braids [20,7

p. 227].
Backing up for the moment, the two most immediate objects defined by an9

Artin presentation r are π(r), the group presented by r, and A(r), the exponent
sum matrix of r. The n × n integer matrix:11

[A(r)]ij = exponent sum of xi in rj

is a presentation matrix of the abelianization of π(r). Further, A(r) is the linking13

matrix of β(r), and hence is symmetric. There are several ways to prove A(r) is
symmetric: braids and linking, the symplectic property of closed surface homeo-15

morphisms [20], and the new proof using combinatorial group theory [6].
An Artin presentation r determines a unique closed, orientable 3-manifold,17

M3(r), by Winkelnkemper’s open book construction. This open book has planar
page Ωn, homeomorphism h(r) and binding ∂Ωn × 0. The fundamental group of19

M3(r) is isomorphic to π(r). Hence, A(r) is a presentation matrix of the first inte-
gral homology group of M3(r), and M3(r) is an integral homology 3-sphere if and21

only if detA(r) = ±1.
Every closed, orientable 3-manifold is homeomorphic to some M3(r). This is a23

fundamental result of González-Acuña [12]. Therefore, Artin presentations charac-
terize the fundamental groups of closed, orientable 3-manifolds. Open book decom-25

positions of 3-manifolds yield simple proofs of important theorems and new results
in 3-manifold theory [17, p. 617], including Bing’s characterization of the 3-sphere,27

and the existence of codimension-1 foliations and contact forms.
An Artin presentation r also determines W 4(r), a unique smooth, compact, sim-29

ply connected 4-manifold with boundary, where ∂W 4(r) = M3(r). The 4-manifold
W 4(r) is given by a relative open book construction by extending h(r) to all of31

S2 by the identity [20, p. 250]. Equivalently, W 4(r) is the 2-handlebody where n

2-handles are attached to D4 according to the closure of the framed, pure braid33

β(r) ⊂ S3 = ∂D4 [7, Sec. 2.1]. The original construction by Winkelnkemper was
motivated by his discovery of the symmetry of A(r) for Artin presentations. Note35

that A(r) represents the quadratic form of W 4(r).
While all closed, orientable 3-manifolds appear in AP theory, it is unknown37

which 4-manifolds appear. The main complexity of a 4-manifold is due to its
2-handles. Still, certain Mazur manifolds, with nonempty boundary a nontrivial39

homology 3-sphere, require a 1-handle, and therefore do not appear as W 4(r). If
the boundary of W 4(r) is S3, then it is natural to close up with a 4-handle and say41

that r determines a smooth, closed, simply connected 4-manifold W 4(r) ∪∂ D4. It
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is not known whether all smooth, closed, simply connected 4-manifolds appear in1

this way. Many interesting closed 4-manifolds do appear in AP theory: all elliptic
surfaces E(n), in particular the Kummer surface K3 = E(2) (see [7]). Of course,3

any smooth, closed, simply connected 4-manifold that requires a 1-handle cannot
appear in AP theory; currently no such manifold is known to exist (see [11, p. 344]).5

AP theory has a natural knot and linking theory that is skein free, purely group
theoretic, and functorial with respect to the Torelli action as described below. This
knot and linking theory is at once canonical and sufficiently general. There are n+1
distinguished knots, k0, k1, . . . , kn in M3(r) given by the binding ∂Ωn × 0 in the
open book construction. The knot groups Gi of the knots ki are presented by (see
[20, pp. 226–227] and [7, Sec. 2.1]):

G0 = 〈x1, . . . , xn | r1 = r2 = · · · = rn〉,
Gi = 〈x1, . . . , xn | r1, r2, . . . ri−1, ri+1, . . . , rn〉, i �= 0.

Moreover, if M3(r) is an integral homology 3-sphere, then the peripheral structures
mi, li of the knots ki are given by: m0 = any ri, l0 = x1x2 · · ·xnm−s

0 where s7

is the sum of the entries in A(r)−1, and for i �= 0, mi = ri, li = xim
−bi

i where
bi = [A(r)−1]ii.9

The generality of this linking theory is exemplified by: if L is any link in
any closed, orientable 3-manifold M3, then the pair (M3, L) is homeomorphic to11

(M3(r), K) for some Artin presentation r, where K is the sublink k1, . . . , km of the
binding. This result is due to González-Acuñaa (unpublished, see [5] for a proof).13

Notice that one recovers González-Acuña’s fundamental result, every closed, ori-
entable 3-manifold is an M3(r), by taking L to be the empty link.15

An important theme in AP theory is that topological invariants of the 3- and
4-manifolds M3(r) and W 4(r) should be computed group theoretically solely in17

function of the discrete Artin presentation r. All homological information is deter-
mined by A(r). González-Acuña’s formula for the Rohlin invariant of an integral19

homology 3-sphere M3(r) is more interesting. For clarity, assumeb A(r) = I. Let
∆ be the Alexander polynomial of the associated presentation:21

〈x1, . . . , xn | xiri = rixi+1, i = 1, . . . , n − 1〉
and let d = ∆(−1). Then23

µ(M3(r)) =
d2 − 1

8
mod 2.

Generalizing González-Acuña’s formula is a group theoretic formula for the25

Casson invariant of a rational homology 3-sphere M3(r) [5]. Again, for clarity

aThe author thanks González-Acuña for fruitful discussions concerning this result.
bIt is open whether every integral homology 3-sphere is represented by an Artin presentation with
A(r) = I. The analogue for Heegaard decompositions is true.



1st Reading

January 23, 2008 18:3 WSPC/134-JKTR 00607

Torelli Actions and Smooth Structures on Four Manifolds 5

assume A(r) = I. For i = 1, . . . , n, let Hi be the associated presentation:1

Hi = 〈x1, . . . , xn | r1, . . . , ri−1, xi+1, . . . , xn〉
and let ∆i denote the Conway normalized Alexander polynomial of the group pre-3

sented by Hi (i.e. ∆i(1) = 1 and ∆i(t) = ∆i(t−1)). Recall that ∆i can be computed
group theoretically in function of Hi (which is in function of r) using the Fox free5

calculus and a computer algebra system such as MAGMA. Then

λ(M3(r)) =
1
2

n∑
i=1

∆′′
i (1).

7

Simple examples show that the Casson invariant is not simply the integer (d2−1)/8
in González-Acuña’s formula for the Rohlin invariant. The general formula for the9

Casson invariant of a rational homology 3-sphere M3(r) when A(r) �= I requires
correction terms determined by the Alexander polynomials of the knots ki [5].11

This already shows that all 3D Seiberg–Witten invariants can be computed
group theoretically in AP theory since such invariants are determined by λ [15]. The13

analogous 4D problem is open (see Turaev [19, p. viii]). We conjecture that a strong
duality holds between the AP theoretic linking theory in the boundary 3-manifold15

M3(r) and the smooth geometry of the bounded 4-manifold W 4(r). Smooth invari-
ants should be in function of group theoretic knot invariants. Relationships between17

smooth invariants and Alexander polynomials of knots have already surfaced [8].
See Sec. 6 for further discussion.19

The group structure on Rn, the set of Artin presentations on n generators, is
fundamental. If r, r′ ∈ Rn and · denotes the group operation in Rn, then r′ · r21

is the composite Artin presentation. Furthermore, A is a group homomorphism
Rn → Matn(Z), namely23

A(r′ · r) = A(r′) + A(r).

Artin presentations whose exponent sum matrices are identically zero are called25

Torelli. The Torelli in Rn form a subgroup of Rn canonically isomorphic to [Pn, Pn],
the commutator subgroup of the n strand pure braid group Pn. The classical Torelli27

group consists of elements of the mapping class group of the closed, oriented genus
n surface that act trivially on homology. The Torelli in AP theory form a subgroup29

of the classical Torelli group.
Two Artin presentations r, r′ ∈ Rn differ by multiplication by a Torelli if and31

only if A(r) = A(r′). Also, A(t · r) = A(r) for all Torelli t, so composing an
Artin presentation with a Torelli preserves the integer homology of both M3(r) and33

W 4(r). This action of the Torelli subgroup on Rn by left translation is extremely
rich and complicated. It can change or preserve different properties of the 3- and35

4-manifolds and the knots ki.
A main purpose of this paper is to show that the Torelli action can preserve the37

continuous topology of W 4(r) while changing its smooth topological type.
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Let r be an Artin presentation such that detA(r) = ±1. Let t be a Torelli such1

that M3(r) and M3(t · r) are orientation preserving homeomorphic. Then, since
A(r) = A(t · r), the 4-manifolds W 4(r) and W 4(t · r) will be homeomorphic by3

Freedman’s theorem (see [9] and [11, p. 448]). The question arises whether these
4-manifolds are necessarily diffeomorphic.5

Using work of Akbulut [1, 2], we show that

Theorem 2.1. There exists Artin presentations r ∈ Rn and Torelli t ∈ Rn for all7

n ≥ 10 such that W 4(r) and W 4(t · r) are homeomorphic but not diffeomorphic.

The common boundary of these 4-manifolds is the simplest hyperbolic integral9

homology 3-sphere, namely the 1/2 Dehn sphere of the figure eight knot in S3 (see
Sec. 4 below).11

Thus, smooth structures on an underlying topological 4-manifold can be changed
in a general, exterior, purely group theoretic manner by a canonical action of the13

Torelli subgroup. This is different from internal surgery methods. Here, pure group
theory generates new 4D smooth structures.15

These examples are the first step and they show that the group theoretic Torelli
action can change the smooth topology of 4-manifolds. The bigger picture involves17

computing smooth invariants (Donaldson, Seiberg–Witten, and so forth) of the
4-manifolds W 4(r) group theoretically in function of r. This would provide a more19

general framework to study 4-manifolds and the Torelli action in AP theory (see
Sec. 6).21

An intriguing question arises, further discussion of which we defer to other
papers. The global consequences of solving the 4D quantum Yang–Mills mass gap23

“Millennium” problem [14, p. 6] are closely related to the behavior of Donaldson
invariants of algebraic surfaces [22, p. 25]. Generalizing Witten’s work [21] on this25

subject from the Kähler case to the general case involves serious analytical obstruc-
tions. Developing purely group theoretic Donaldson invariants could be a promising27

attack.

3. Constructing the Artin Presentations29

Figure 1 contains two framed, pure braids s1 and s2 on ten strands. A framed
pure braid determines an Artin presentation [7], so let s1 and s2 denote the Artin31

presentations in R10 corresponding to these framed pure braids, where no confusion
should arise.33

Theorem 3.1. The Artin presentations s1 and s2 differ by multiplication
by a Torelli t. Furthermore, W 4(s1) and W 4(s2) are homeomorphic but not35

diffeomorphic.

The proof is below. First, note some properties of these Artin presentations.37

The matrices A(s1) and A(s2) are equal and have determinant +1 (see Fig. 2).
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Fig. 1. Pure braids s1 and s2, each with framings −1,−2,−1,−2,−1,−1,−1,−1,−23,−1 from
left to right.

Fig. 2. Matrix A(s1) = A(s2) with det = +1.

Hence, M3(s1) and M3(s2) are integral homology 3-spheres and s1 and s2 differ1

by multiplication by the Torelli t = s2 · s1−1. The fact that M3(s1) and M3(s2)
are orientation preserving homeomorphic follows from work of Akbulut [1, 2] along3

with the construction of these pure braids below.
In Sec. 4, the 3-manifolds M3(s1) and M3(s2) are identified as the simplest5

hyperbolic integral homology 3-sphere, namely the 1/2 Dehn sphere of the figure
eight knot of S3.7

Freedman’s theorem, as discussed above, implies W 4(s1) and W 4(s2) are home-
omorphic. Below it is shown that they are not diffeomorphic. This remains true9

stably, that is upon finitely many blow ups with CP
2
. Hence, one obtains similar

examples in Rn for all n ≥ 10.11
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-2

-1

-4

-1

Fig. 3. Two 4-manifolds Q1 (left) and Q2 (right).

The construction of the Artin presentations s1 and s2 begins with the two1

manifolds Q1 and Q2 in Fig. 3. These interesting manifolds were discovered by
Akbulut [1, 2]. In particular, by reversing each crossing and changing the sign of the3

framings from −1 to +1, one obtains Akbulut’s manifolds Q1 and Q2 respectively
(see [2, p. 357]). As usual, M denotes the oriented manifold obtained from the5

oriented manifold M by reversing the orientation on every component.
Akbulut showed [2] that Q1 and Q2 are homeomorphic but not diffeomorphic.7

Hence, Q1 and Q2 are homeomorphic but not diffeomorphic. His proof relies on
the computation of a Donaldson invariant [1]. This result also follows from the9

adjunction inequality [11, pp. 448–449].
For present purposes, a stable version of this result is needed. This was already11

implicit in Akbulut’s work.c

Claim 3.2. Q1#kCP
2

and Q2#kCP
2

are homeomorphic but not diffeomorphic13

for all k ≥ 0.

Proof. Following Akbulut’s notation [2], the manifolds in question are homeomor-15

phic since Q1 and Q2 are homeomorphic. Akbulut constructed a smooth, compact,
connected, simply connected 4-manifold M1 with ∂M1 = ∂Q1 = ∂Q2 [1]. Fur-17

thermore, Q2 splits off a CP 2 summand, that is Q2 = W1#CP 2 where W1 is
a smooth, compact, contractible 4-manifold with ∂W1 = ∂Q2 [2, p. 359]. Thus,19

Q2 = W 1#CP
2

splits off a CP
2
.

Suppose Q1#kCP
2

and Q2#kCP
2

are diffeomorphic for some k ≥ 0. Since Q2 =
W 1#CP

2
, it follows that there are k + 1 disjoint smoothly embedded 2-spheres in

Q1#kCP
2
, each with self intersection number −1. Thus, Q1#kCP

2
= V #k+1CP

2

for some smooth, contractible 4-manifold V with ∂V = ∂Q1 (see [11, p. 46]). Let

cThis also follows from uniqueness of minimal models of surfaces of general type, as pointed out
to the author by Gompf.
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M̃ = M1 ∪∂ Q1 and M ′ = M1 ∪∂ V . Then

M̃#kCP
2

= (M1 ∪∂ Q1)#kCP
2

= M1 ∪∂ (Q1#kCP
2
)

= M1 ∪∂ (V #k+1CP
2
)

= M ′#k+1CP
2
.

This is a contradiction (see [2, p. 358], Property 2) and the claim follows.1

The remainder of the proof of the main theorem consists of blowing up Q1 and Q2

with finitely many CP
2
s and using isotopy to obtain the closure of two pure braids3

with equal linking matrices. It is not difficult to blow up a knot or link and apply
isotopy and handle slides to obtain a pure link. The difficulty lies in doing this to5

two different links with the ultimate goal of obtaining equal linking matrices.
Below, Q1 and Q2 are each blown up with 9 CP

2
s which, along with isotopy,7

produces the closures of the pure braids in Fig. 1.
Begin by blowing up Q1 from Fig. 3 to obtain the first diagram in Fig. 4. The9

rest of the figure modifies Q1#CP
2

by isotopy. Blowing up again produces the first
diagram in Fig. 5. The rest of the figure modifies Q1#2CP

2
by isotopy.11

Blow up twice to obtain the first and second diagrams in Fig. 6. By an isotopy
of the second diagram in Fig. 6, one obtains the first diagram in Fig. 7. Another13
isotopy yields the second diagram in Fig. 7. Figure 8 is obtained by blowing up.

Now, an operation is described to blow up and eliminate twists. The first dia-15
gram in Fig. 9 represents a local picture of a single framed knot. The top two free
strands connect elsewhere, the bottom two strands connect elsewhere, and the fram-17
ing coefficient equals d. The diagram will only be changed locally. The box with −1
in it represents a single twist, as shown by the second diagram in Fig. 9. Blowing19
up yields the third diagram, and a local isotopy produces the final diagram. The
framing d changes to d − 4.21

-2

-5

-1 -2 -2

-5

-1

-5

-1

Fig. 4. Two isotopies of Q1#CP
2
.
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-2 -2

-1

-6

-2

-6

-2

-1

-2

-6
-2

-1

Fig. 5. Blow up of Q1#CP
2

and two isotopies.

-3 -3

-6

-1

-2

-1

-7

-2

-2

-1

-1

Fig. 6. Two blow ups of Q1#2CP
2
.

It is useful to see diagrammatically how to apply this operation and then perform1

isotopy to obtain pure links. Figure 10 shows how to remove multiple twists by
blowing up. Note that the thickened lines represent parts of the link diagram that3

do not change. Figure 11 shows how to isotop the second diagram in Fig. 10 to put
the new components in pure link form (framings are unchanged).5

One obtains the pure braid s1 in Fig. 1 as follows. The −1 framed circle C (just
above the “−4” box) in Fig. 8 should be thought of as lying in the upper thickened7

line in Fig. 10 that cuts across the shown knot twice. Perform the operations shown
in Figs. 10 and 11, and then perform the operation in Fig. 12 on the −1 framed9

circle C just described. Now, take the portion of the link that was in the upper
thickened line and slide it up and all the way around to the bottom of the diagram.11

This produces the pure braid s1.
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-3

-7

-2

-1

-1

-2

-3

-7

-2

-1

-2

-1

Fig. 7. Two isotopies of Q1#4CP
2
.

-4

-7
-2

-1

-2
-1

-1

Fig. 8. Blow up of Q1#4CP
2
.

Proceeding to Q2, blow up Q2 from Fig. 3 twice to obtain the first diagram1

in Fig. 13. Perform a simple isotopy and then blow up again to obtain the rest of
Fig. 13. Figures 14 and 15 contain straightforward isotopies.3

The first diagram in Fig. 16 is obtained by isotopy, and the second by blowing
up. Another isotopy yields Fig. 17. Perform the operations in Figs. 10 and 11 on the5

framed link in Fig. 17. Take the portion of the link that was in the upper thickened
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-1

d d d-4

-1

d-4

-1

Fig. 9. Blowing up to remove a twist in a single component.

-4

a a-16

-1

-1

-1

-1

Fig. 10. Four blow ups to remove four twists.

Fig. 11. Isotopy of untwist operation to braid.
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-1

-1

Fig. 12. Isotopy of loop to braid.

-4

-5

-4

-6

-1

-2 -1

-1

-1-4

-5

-1-1

Fig. 13. Isotopy of Q2#2CP
2

followed by blow up.

-4 -4 -4

-1

-1

-2

-6

-1

-1

-2
-2

-1

-1

Fig. 14. Isotopies of Q2#3CP
2
.

line in the operation in Figs. 10 and 11 and slide it up and all the way around to1

the bottom of the diagram. Blow up once more and leave this as the trivial tenth
strand not linking anything. This produces the second pure braid s2 in Fig. 1.3

This completes the construction of the Artin presentations s1 and s2 and the
proof of the main theorem.5
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-4

-1

-1

-6

-2

-4

-2

-1

-6

-1

Fig. 15. Isotopies of Q2#3CP
2
.

-4 -4

-1

-7

-2

Fig. 16. Isotopy of Q2#3CP
2

followed by blow up.

-4

-2

-1

-1

-2

-7

Fig. 17. Isotopy of Q2#4CP
2
.
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4. Identifying Boundaries1

This section shows that the 3-manifolds M3(s1) and M3(s2) are both homeomor-
phic to the 1/2 Dehn sphere of the figure eight knot of S3, the simplest hyperbolic3

integral homology 3-sphere. It suffices to identify ∂Q1 from Fig. 3 as this Dehn
sphere, since the 3-manifolds M3(s1), M3(s2), ∂Q1, and ∂Q2 are all homeomor-5

phic. One may blow up with CP
2

and/or CP 2 now since the only concern is the
3-manifolds.7

As in Fig. 18, blow up Q1 with two CP 2s to remove the two twists, then blow up
with CP

2
as shown. Slide the 0 framed component over the +1 framed component in9

a very simple way (use a trivial band) to obtain the first diagram in Fig. 19. Blow
down the right +1 framed component to obtain the second diagram in Fig. 19.11

The third diagram in Fig. 19 is obtained by interchanging the 0 and −1 framed
components by isotopy, exactly as one does with a Whitehead link. Take the third13

diagram in Fig. 19, rotate it 90 degrees clockwise and blow down the −1 framed
component to introduce a twist. The result is the first diagram in Fig. 20. Finally,15

perform a slam dunk (see [11, pp. 163–164]) to obtain 1/2 surgery on the figure
eight knot (Fig. 20), as desired.17

-2

-1 -1

+1

+1

-1

-1

+1

0

Fig. 18. Blow ups of Q1, first with two CP 2s, then with one CP
2
.

-1

-1

+1
+1

-1

-2

0 -1

-2

0

Fig. 19. A 2-handle slide, a blow down (of right +1), and an isotopy.
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1/2

-2

0

Fig. 20. Blow down and slam dunk.

5. Knots1

The Alexander polynomials of the knots ki(s1) and ki(s2) in the 3-manifolds M3(s1)
and M3(s2) are easily found using a computer algebra system such as MAGMA.3

The Alexander polynomials of the knots in M3(s1) are:

Knot Alexander Polynomial

k1 (t2 − 3t + 1)(t2 − t + 1)

k2 t2 − 3t + 1

k3 2t12 − 2t11 + t9 − t8 + t6 − t4 + t3 − 2t + 2

k4 2t6 − 2t5 + t4 − t3 + t2 − 2t + 2

k5 2t6 − 2t5 + t3 − 2t + 2

k6 2t6 − 2t5 + t3 − 2t + 2

k7 2t6 − 2t5 + t3 − 2t + 2

k8 2t6 − 2t5 + t3 − 2t + 2

k9 2t2 − 3t + 2

k10 t2 − 3t + 1

5

The Alexander polynomials of the knots in M3(s2) are:

Knot Alexander Polynomial

k1 t6 − 6t5 + 11t4 − 11t3 + 11t2 − 6t + 1

k2 3t2 − 7t + 3

k3 t18 − t17 + 5t12 − 8t11 + 3t10 + t9 + 3t8 − 8t7 + 5t6 − t + 1

k4 t10 − t9 + 5t6 − 9t5 + 5t4 − t + 1

k5 (t2 − t + 1)(t4 − t2 + 1)2

k6 (t2 − t + 1)(t4 − t2 + 1)2

k7 (t2 − t + 1)(t4 − t2 + 1)2

k8 (t2 − t + 1)(t4 − t2 + 1)2

k9 (t2 − t + 1)2

k10 17
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Curiously, the knots k0(s1) and k0(s2) both have Alexander polynomials of
degree 108 (when normalized so the lowest degree term is t0). However, the
Alexander polynomial of k0(s1) is irreducible while that of k0(s2) factors into the
product of:

t2 − t + 1,

t6 − t3 + 1,

t8 − t7 + t5 − t4 + t3 − t + 1,

t8 + t7 − t5 − t4 − t3 + t + 1,

(t18 − t9 + 1)2,

t24 − t21 + t15 − t12 + t9 − t3 + 1, and

t24 + t21 − t15 − t12 − t9 + t3 + 1.

The only knots whose groups we recognize are k9(s1) and k10(s2). The group of1

k9(s1) is isomorphic to the group of the 52 knot in S3 with Alexander polynomial
2t2 − 3t + 2. It is easy to see that k10(s2) is the trivial knot in M3(s2) from the3

braid s2. The Torelli t takes the knot k9(s1) to the knot k9(s2), the latter of which
has a huge presentation and Alexander polynomial (t2 − t + 1)2.5

The lengths of the individual relations in s1 and s2 are:

Relation s1 s2 Relation s1 s2

1 3187 1723 6 269 1733

2 13506 734 7 251 1715

3 8103 243 8 245 1709

4 7132 5624 9 7475 8215

5 323 1787 10 4891 1

7

Thus, s1 has total relator length 45382 and s2 has total relator length 23484.
Notice that even though s2 splits off a CP

2
summand, it is the manifold with9

nontrivial Donaldson invariants [1, 2]. It seems curious that s2 is the tighter pre-
sentation. The Kummer surface K3 = E(2) also has nontrivial smooth invariants11

and one Artin presentation for K3 in R22 has total relator length 4562 [7].
Finally, the inverse matrix A(s1)−1 in Fig. 21 gives the peripheral structures of13

the knots ki as described in Sec. 2.

6. Future Direction15

The first basic questions in AP theory concern representing 3- and 4-manifolds.
All closed, orientable 3-manifolds appear. Still, it is open whether every integral17

homology 3-sphere can be represented by an Artin presentation r with A(r) = I; the
analogue for Heegaard decompositions is true. More generally, can every rational19

homology 3-sphere can be represented by an Artin presentation r with A(r) a
diagonal matrix?21
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Fig. 21. Matrix A(s1)−1 = A(s2)−1.

A more difficult question is: which closed 4-manifolds appear in AP theory?1

Recall that if M3(r) = S3, then it is natural to close up W 4(r) with a 4-handle
(which may be done uniquely), thus obtaining a closed, smooth, simply connected3

4-manifold.
Representing closed 4-manifolds in AP theory involves two difficulties. First,5

one must represent the manifold as a 2-handlebody; it is open whether all closed,
smooth, simply connected 4-manifolds admit 2-handle decompositions (see [11,7

p. 344]). Second, one must arrange that the link along which the 2-handles are
attached is the closure of a pure braid. This second step surely requires birth and9

death of cancelling handle pairs, which is quite subtle [10].
The empty presentation r = 〈|〉 is the unique Artin presentation in R0 and11

gives the closed 4-manifold S4. In R1 and R2, Artin presentations are determined
by their exponent sum matrices and there are no nontrivial Torelli. However, the13

Torelli subgroup in R3 is already infinitely generated and very complicated.
The manifolds constructed in this paper show that the Torelli action in R1015

can change the smooth structure of a 4-manifold while preserving its continuous
topological type. One would like to find similar examples where: the boundaries are17

S3 (closed 4-manifolds), the 4-manifolds are irreducible, and/or n = b2 < 10. A
potential example with closed 4-manifolds has already appeared [7, p. 20]. In this19

example, r ∈ R22 is an Artin presentation for the Kummer surface (so π(r) = 1) and
a certain Torelli t is shown to preserve π = 1 while changing exactly one Alexander21

polynomial, namely k0. In the above main examples the Alexander polynomials k0

also had very interesting properties.23

Deeper is the study of smooth invariants in AP theory. An Artin presentation
is a discrete, purely group theoretic object, yet it provides a very nice geomet-25

ric decomposition of both the 3- and the 4-manifold. Moreover, the intrinsic knot
theory seems central to computing smooth invariants (already a fact with the Cas-27

son invariant). Note that the smooth 4-manifold W 4(r) is completely determined
by the framed pure braid β(r) and the knots ki(r) are meridians of this braid.
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These considerations, along with the fact that knots and Alexander polynomials1

are already known to be related to smooth 4D invariants [8], lead us to:

Conjecture 3.3. In AP theory, the smooth structure of the bounded 4-manifold is3

dual to the canonical knot theory in the bounding 3-manifold.

This is the AP theoretic analogue of the Gopakumar–Vafa conjecture which states5

that knot theoretic invariants in certain 3-manifolds correspond to certain counts
of holomorphic curves in an associated vector bundle [13].7

In AP theory, the Alexander polynomials of the knots ki in the bounding
3-manifold M3(r), along with their peripheral structures, should determine non-9

trivial smooth invariants of the canonically associated bounded smooth 4-manifold
W 4(r). The geometric transitions in AP theory result from the Torelli action.11

The broader picture of the Torelli action described in this paper runs as fol-
lows. Start with an Artin presentation r with M3(r), W 4(r), and A(r) possessing13

whichever desired properties. Compose this Artin presentation with many Torelli,
using a computer algebra system, such as MAGMA, until M3(r) and M3(t · r) are15

orientation preserving homeomorphic. Compute a group theoretic smooth invariant
of W 4(t · r), and conclude the smooth structure has been changed.17

The first difficulty with this program is recognizing the 3-manifolds. The truth
of the 3D Poincaré conjecture would reduce closed 4-manifold theory in AP theory19

to the study of Artin presentations of the trivial group. In some cases, certain
group theoretic invariants of the fundamental groups of the 3-manifolds (found on21

the computer) hint that the 3-manifolds may be the same, after which the Kirby
calculus can be employed to show that they are actually homeomorphic.23

The main advantages of AP theory are generality and computability. All
3-manifolds and links therein appear, and a sufficiently rich collection of 4-manifolds25

appears (possibly all closed, smooth, simply connected 4-manifolds). Invariants
of both the discrete Artin presentation r and the knots ki are computed using27

MAGMA on the computer, and there are no computational difficulties here.
An important question is: how can one utilize the structure of the 3-manifold29

as an open book with planar page, and the near mapping tori structure of the
4-manifold as a special 2-handlebody to compute 4D gauge theoretic invariants in31

AP theory? We remark that open book decompositions have played an important
role in understanding contact structures on 3-manifolds.33

Finally, the Fintushel–Stern knot surgery operation can be represented as a
series of ±1 generalized logarithmic transformations on null-homologous tori [18,35

pp. 9–10]. The change in Seiberg–Witten invariants under such transformations is
well understood [16, 18]. Can the smooth structure changing Torelli action in AP37

theory be represented (canonically) as a series of such transformations? Compare
the perturbations required with computing the Casson invariant in AP theory.39

The perturbations are nontrivial, yet they do not remove one from the realm of AP
theory [5].41
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