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Abstract. Ends and end cohomology are powerful invariants for the study of noncompact
spaces. We present a self-contained exposition of the topological theory of ends and prove
novel extensions including the existence of an exhaustion of a proper map. We define
reduced end cohomology as the relative end cohomology of a ray-based space. We use those
results to prove a version of a theorem of King that computes the reduced end cohomology
of an end sum of two manifolds. We include a complete proof of Freudenthal’s fundamental
theorem on the number of ends of a topological group, and we use our results on dimension-
zero end cohomology to prove—without using transfinite induction—a theorem of Nöbeling
on freeness of certain modules of continuous functions.
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1. Introduction

In the study of noncompact spaces, ends play a fundamental role. The notion of an end
is quite intuitive—the real line has two ends and the real plane has one end. Freuden-
thal [Fre31] put the theory of ends on a firm foundation and proved his groundbreaking
result that each path connected topological group has at most two ends. Since that time,
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Hopf [Hop44], Stallings [Sta68], and others have significantly extended Freudenthal’s ideas
to prove substantial topological, algebraic, and geometric results.

Several topological invariants have useful adaptations to the noncompact setting including
homotopy and homology groups and cohomology rings. Proper maps play a central role,
and adaptations often involve a direct or an inverse limit—see Hughes and Ranicki [HR96,
Ch. 1–3], Geoghegan [Geo08, Ch. 11–16], and Guilbault [Gui16].

The classical connected sum of compact surfaces also has an analogue for noncompact
manifolds—end sum—introduced by Gompf [Gom83, Gom85]. One glues together two
noncompact manifolds guided by a proper ray in each manifold. That operation is now a
major tool for constructing interesting manifolds. For recent examples, see Bennett [Ben16],
Sparks [Spa18], Gompf and the second author [CG19], and Guilbault, Haggerty, and the
second author [CGH20]. End sum may also be used to prove the hyperplane unknotting
theorem: each proper embedding of Rn−1 in R

n is unknotted provided n 6= 3 [CKS12, CG19].

The dependence of end sum on ray choice is an immediate question. Even in R
n, the

question of whether there is a choice of ray is interesting. Fox and Artin [FA48, p. 983]
exhibited the first knotted ray in R

3. Gompf [Gom85, Lemma A.1] showed using finger
moves that each ray in R

n is unknotted for n ≥ 4. King, Siebenmann, and the second
author [CKS12, Thm. 9.13] used embedded Morse theory to show that each ray unknots in
R
2. Thus, a ray knots in R

n if and only if n = 3, and the end sum of two copies of Rn is
diffeomorphic to R

n provided n 6= 3. Myers [Mye99] showed that end sums of two copies of
R
3 yield uncountably many topological types—see also [CH14, App.].

In dimensions greater than 3, Siebenmann conjectured [CKS12, pp. 1804–1805] that ray
choice could alter the topological type of the end sum of two open, one-ended manifolds.
Haggerty and the second author [CH14] constructed examples verifying Siebenmann’s con-
jecture. Guilbault, Haggerty, and the second author [CGH20] later produced many more
examples. All of those examples were distinguished using their end cohomology algebras.
King (unpublished) suggested a theorem for computing the end cohomology algebra of an
end sum in terms of the end cohomology algebras of the summands [CGH20, §5]. That
theorem relies on reduced end cohomology—which lacks a precise definition in the litera-
ture. The main goals of the present paper are to provide a precise definition of reduced
end cohomology, to use that definition to state and prove King’s theorem, and to include
all supporting topological background. We have intentionally included complete proofs of
that background material since some of it is hard to find in the literature.

Reduced cohomology is sometimes regarded merely as a tool for streamlining statements
such as the cohomology of a point, a sphere, a wedge sum, and a connected sum of manifolds.
More significantly, the suspension axiom holds in all dimensions for reduced cohomology, and
homotopical cohomology yields reduced theories—see May [May99CC, Ch. 19 & 22]. Vari-

ous constructions lead to reduced cohomology H̃∗ (X) of a space X: augmentation, relative
cohomology of based spaces, and homotopical cohomology. We compare those approaches
in Section 6. They yield canonically isomorphic results when X is path-connected—but not
otherwise. That difference is relevant to the theory of ends where disconnected spaces are
ubiquitous. All three approaches yield splittings

(1.1) H∗ (X) ∼= H̃∗ (X)⊕H∗ (•)
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where {•} is a one-point space. While augmentation has the apparent advantage of avoiding
a choice of basepoint, the resulting splitting (1.1) is not natural in X and cup products with
dimension-zero classes are not well-defined. If instead one chooses a basepoint and defines

H̃∗ (X) = H∗ (X, •), then the splitting (1.1) is natural inX for based maps, all cup products

are well-defined, and H̃∗ (X) is a graded, associative algebra. Therefore, the definition using
a basepoint is preferred.

Given a noncompact space X with an exhaustion by compacta, the ends of X are defined
using the complements of those compacta. The end cohomology algebra H∗

e (X) of X is
defined to be the direct limit of the cohomology algebras of those complements. A baseray

in X is a proper embedding r : [0,∞) → X. By analogy with the preferred definition
of reduced cohomology, we define—see (7.3)—the reduced end cohomology algebra

H̃∗
e (X) of X to be the relative end cohomology algebra of the ray-based space (X, r). In

Theorem 7.3, we obtain a splitting

(1.2) H∗
e (X) ∼= H̃∗

e (X)⊕H∗
e ([0,∞))

that is natural in X for ray-based proper maps. To obtain that splitting, we prove in
Theorem 5.8 that X properly retracts to any baseray.

We study dimension-zero end cohomology in detail. Using coefficients in a PID R—equipped
with the discrete topology—we prove in Lemma 7.4 that H0

e (X) ∼= C(E(X), R) where
C(E(X), R) denotes the R-module of continuous functions from the end space of X to R.
In Theorem 7.7, we give a very direct proof that H0

e (X) is a free R-module of countable
rank equal to the number of ends of X (where infinities are not distinguished). To make
the algebra in the proof of Theorem 7.7 as simple as possible, we introduce in Section 4 the
notion of an exhaustion of a map and prove its existence for any proper map.

Lemma 7.4 and Theorem 7.7 combine to prove a theorem of Nöbeling: if A is a profinite
space—the limit of an inverse system of finite sets—then C(A,Z) is a free Z-module. Our
proof of Nöbeling’s theorem in Remarks 7.6 relies on the theory of ends only for locally
finite trees and does not use transfinite induction.

Our development of reduced end cohomology requires several topological results—some
novel—including the existence of: compact exhaustions of spaces and maps, end spaces,
baserays, and retracts to baserays. Those results ultimately require some niceness conditions
on spaces. The main class of spaces with which we work—generalized continua—includes
manifolds, locally finite simplicial complexes, locally finite CW-complexes, and many ANRs.
We have included complete proofs of those results for generalized continua—sometimes
assumed metrizable—for the benefit of the reader, to make this paper as self-contained as
possible, since we are unaware of complete published proofs of some background material,
and to advertize certain notions such as Guilbault’s efficient compact exhaustions.

This paper is organized as follows. Section 2 introduces generalized continua and proves
that each generalized continuum admits an efficient exhaustion by compacta. Section 3
develops the endpoint compactification of a generalized continuum. We include a complete
proof of Freudenthal’s theorem: each path connected generalized continuum that is a topo-
logical group has at most two ends. Section 4 introduces our notion of a compact exhaustion
of a proper map and proves that each proper map of generalized continua has an efficient
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compact exhaustion. Section 5 studies baserays in generalized continua, including an ex-
ample of a generalized continuum that contains no baseray. We prove that each metrizable
generalized continuum contains a baseray pointing to any specified end. Also, we prove that
there exists a proper retract to a given baseray. Section 6 compares three well-known defi-
nitions of reduced ordinary cohomology. In Section 7, we review end cohomology and define
reduced end cohomology. We prove a natural splitting for reduced end cohomology, study
dimension-zero reduced end cohomology in detail, and use those results to prove Nöbeling’s
theorem. Section 8 recalls the notion of an end sum of manifolds. Using our definition of
reduced end cohomology, we state and prove a version of King’s theorem that computes the
end cohomology of an end sum. Section 9 closes with several questions for further study.

Throughout, we use the following conventions. Spaces are Hausdorff topological spaces.
As usual, I = [0, 1] ⊆ R denotes the closed unit interval. A compactum is a compact
space—not necessarily metric. A map is a continuous function. A map is proper provided
the preimage of each compactum is compact. A proper homotopy is a homotopy that is
a proper map. Maps are properly homotopic provided they are homotopic by a proper
homotopy; properly homotopic maps are necessarily proper. Let X be a space, and let
A ⊆ X be a subspace of X. Then, A◦ denotes the topological interior of A in X, A
denotes the topological closure of A in X, and FrA denotes the topological frontier of
A in X. If the ambient space X must be specified, then we instead write IntXA, ClXA,
and FrXA for those subspaces. We say A is bounded provided A is compact, and A is
unbounded provided A is noncompact. Component means connected component. We
adopt the convention that each connected space has exactly one nonempty component.
In particular, connected implies nonempty, and the empty space is neither connected nor
disconnected. The notation Y ֌ Z denotes an injective function and Y ։ Z denotes a
surjective function. If Y ⊆ Z, then Y →֒ Z denotes inclusion. We write Y ≈ Z to mean that
Y and Z are homeomorphic. We use the singular theory for (co)homology and—following
Hatcher [Hat02, p. 212]—we refer to the integer k in any homology group Hk or cohomology
group Hk as the dimension rather than the degree.

2. Compact exhaustions of spaces

Let X be a space. An exhaustion of X by compacta—also called a compact exhaus-

tion of X—is a countably indexed, nested sequence K1 ⊆ K2 ⊆ · · · of compacta in X such
that: (i) X = ∪iKi and (ii) Ki ⊆ K◦

i+1 for each i ∈ Z+. Those properties ensure that
for each compactum K ⊆ X there exists i ∈ Z+ such that K ⊆ K◦

i . Using Guilbault’s
terminology [Gui16, §3.3.1], a compactum K ⊆ X is efficient provided K is connected
(hence, nonempty) and each component of X − K is unbounded. A compact exhaustion
{Ki} of X is efficient provided each Ki is efficient.

Examples 2.1.

(a) Each efficient compact exhaustion of [0,∞) has the form Ki = [0, bi] for some
increasing, unbounded sequence 0 ≤ b1 < b2 < b3 < · · · of real numbers.

(b) Euclidean space Rn is efficiently exhausted by closed disks of radius i ∈ Z+ centered
at the origin.

(c) Each subsequence of an (efficient) compact exhaustion is an (efficient) compact
exhaustion. That fact will be used throughout.
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(d) As a nonexample, consider R2 and let Ki be the closed disk of radius i ∈ Z+ centered
at the origin minus the open sector of points with polar angle 0 < θ < π/i as in
Figure 2.1. The nested compacta Ki cover R

2, but property (ii) in the definition

…

K 2

K 1

K 3

K 4

Figure 2.1. Nested compacta Ki covering R
2.

of compact exhaustion is not satisfied. No compactum in R
2 containing an open

neighborhood of the origin is contained in any Ki, let alone in the interior of any
Ki.

(e) Not every space admits a compact exhaustion. Consider the wedge sum W of
countably infinitely many copies of the closed unit interval [0, 1] ⊆ R each based at
0. The simplicial 1-complex W fails to be locally finite at the wedge point p, and
no compact subspace of W contains p in its interior. Thus, some conditions are
required to ensure that a space admits an exhaustion by compacta.

Using terminology of Baues and Quintero [BQ01, p. 58], a generalized continuum is
a Hausdorff space that is connected, locally connected, σ-compact, and locally compact.
Recall that a space is σ-compact provided it is the union of countably many compacta.
Generalized continua include all:

(1) connected, Hausdorff, second countable manifolds (with or without boundary),

(2) connected, locally finite simplicial complexes,

(3) connected, locally finite CW complexes, and

(4) connected, separable, metric absolute neighborhood retracts (ANRs).

Remarks 2.2.

(a) To show those and other connected spaces are generalized continua, useful references
include Lee [Lee11, pp. 38–44 & 93–110] and Spivak [Spi99, pp. 1–6 & 459–460] for
manifolds, Hatcher [Hat02, pp. 519–529] and Geoghegan [Geo08, §10.1] for CW
complexes, Guilbault [Gui16, §3.1, 3.3, & 3.12] for ANRs, Munkres [Mun18, p. 215]
for Urysohn’s metrization theorem, and Rudin [Rud69] for a short proof that each
metric space is paracompact.

(b) Each generalized continuum is also paracompact, regular, normal, and Lindelöf.
There are several ways to deduce those properties from the literature. For instance,
locally compact, Hausdorff, and σ-compact imply paracompact by Hocking and
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Young [HY61, Thm. 2-65]. Paracompact and Hausdorff imply regular and normal
by Hocking and Young [HY61, Thms. 2-62 & 2-63]. Regular, Hausdorff, and σ-
compact imply Lindelöf by Engelking [Eng89, Thm. 3.8.5].

(c) Each space of type (1)–(4) above is metrizable. Nevertheless, there exist nonmetriz-
able generalized continua—see Example 5.1.

(d) If X is a compact generalized continuum, then there is a unique efficient compact
exhaustion of X, namely Ki = X for i ∈ Z+. (Otherwise, some X −Ki contains a
component C. Efficiency of Ki implies C is noncompact. But, C is compact since
it is closed in the compactum X, a contradiction.)

It is a well-known fact that each generalized continuum admits an efficient exhaustion by
compacta. For instance, that fact—with the local connectedness hypothesis replaced by
local path connectedness—is Exercise 3.3.4 in Guilbault [Gui16]. We include a proof to
make this text more self contained, since we are unaware of a published proof, and we use
it to prove novel extensions to pairs of spaces and to maps. The following notation and
terminology will be useful.

Notation 2.3. Given a subspace A of a space X, let B (A) denote the set of bounded
components of A, and let U (A) denote the set of unbounded components of A. If K is a
compactum in X, then we define K ′ = K ∪ B (X −K) the bounded filling of K in X.
We employ standard notation for the union of sets: if A is a set of sets, then ∪A and ⊔A
respectively denote the union and disjoint union of the sets in A. In particular, we have

(2.1) X = K ⊔ B (X −K) ⊔ U (X −K) = K ′ ⊔ U (X −K)

Note that ⊔ merely emphasizes that sets are disjoint and is not used in a topological sense.

Example 2.4. Consider the connected compactum K ⊆ R
2 in Figure 2.2. It is obtained

K

…

Figure 2.2. Connected compactum K in R
2.

by removing from the closed unit disk a sequence of disjoint open subdisks converging to a
point. The complement of K in R

2 has infinitely many bounded components. Nevertheless,
the bounded filling K ′ of K in R

2 is compact and the number of unbounded components of
R
2 −K is finite. Those two properties hold generally as will be shown in Lemma 2.7.

Lemma 2.5. Let X be a generalized continuum, let K ⊆ X be a nonempty compactum,
and let C be a component of X − K. Then: (i) C is open in X, (ii) C meets each open
neighborhood of K in X, (iii) C ⊆ K ∪ C, (iv) C meets K, (v) if K is connected, then K
union any collection of components of X −K is connected, and (vi) if K is connected, then
the bounded filling K ′ of K in X is connected.
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Proof. As K ⊆ X where K is compact and X is Hausdorff, K is closed in X and X −K is
open in X. As X is locally connected, X −K is locally connected. As C is a component of
X −K, C is open in X −K. As X −K is open in X, C is open in X proving (i).

Let N be an open neighborhood of K in X. Suppose, by way of contradiction, that C is
disjoint from N . By (i), each component of X −K is open in X. So, the union U of N and
all components of X −K other than C is open in X. Thus, C and N separate X. That
contradicts the hypothesis that X is connected and proves (ii).

Note that K ∪ C is closed in X since its complement in X is the union of all components
of X − K other than C and components of X − K are open in X by (i). As K ∪ C is
closed in X and contains C, C ⊆ K ∪ C proving (iii). Suppose, by way of contradiction,
that C is disjoint from K. As C ⊆ K ∪ C, we have C ⊆ C and C = C. So, C is open and
closed in X, is nonempty, and has nonempty complement since K is nonempty. Thus, X is
disconnected, a contradiction, which proves (iv).

Assume K is connected and let A ⊆ X be the union of K and an arbitrary collection of
components of X −K. Let B ⊆ A be a subspace that is open, closed, and meets K. As
K is connected, K ⊆ B. Let C be any component of X − K that lies in A. As C is
connected, C is connected. We have C ⊆ K ∪ C ⊆ A where the first containment holds
by (iii). By (iv), C meets K ⊆ B. Hence, C ⊆ C ⊆ B where the second containment holds
since C is connected. Therefore, A ⊆ B and A is connected, proving (v). Now, (vi) is an
immediate consequence of (v). �

Lemma 2.6. Let Y be a subspace of a space Z. Then: (i) if A ⊆ Y , then A is connected
as a subspace of Y if and only if A is connected as a subspace of Z, and (ii) if Y is a union
of components of Z, then the components of Y are the components of Z in that union.

Proof. The topology on A as a subspace of Y equals the topology on A as a subspace of Z,
which proves (i). Let {Ci | i ∈ T} be the set of components of Z and suppose Y = ∪i∈SCi

for some index set S ⊆ T . Consider Cj for some j ∈ S. As Cj is connected in Z, Cj is
nonempty and is connected in Y by (i). So, Cj lies in a unique component C of Y . As C
is connected in Y , C is connected in Z by (i). As C meets the component Cj of Z, C lies
in Cj . Thus, Cj = C is a component of Y . Conclusion (ii) follows since Y = ∪i∈SCi. �

Lemma 2.7. Let X be a generalized continuum and let K ⊆ X be a nonempty com-
pactum. Then: (i) X − K has finitely many unbounded components, (ii) the bounded
filling K ′ of K in X is compact, and (iii) X − K ′ has only unbounded components and
U (X −K ′) = U (X −K).

Proof. As X is locally compact, there exists a bounded open neighborhood N of K in X.
So, X has an open cover {N} ∪ B (X −K) ∪ U (X −K). As N is compact, N has a finite
cover

(2.2) N ⊆ N ∪B1 ∪B2 ∪ · · · ∪Bk ∪ U1 ∪ U2 ∪ · · · ∪ Ul

where each Bi is a bounded component of X −K and each Ui is an unbounded component
of X −K.

We claim that any component C of X −K other than a Bi or Ui in (2.2) is contained in
N . Suppose, by way of contradiction, that C is such a component not contained in N . By
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Lemma 2.5 parts (i) and (ii), C ∩N is open in X and in C and is nonempty. Also, C −N
is open in X and in C. As C is not contained in N , C meets X − N . By (2.2), C meets
X −N and C −N is nonempty. Thus, C ∩N and C −N separate C. But, C is connected,
and that contradiction proves the claim.

As N is bounded, no unbounded component of X − K is contained in N . So, the claim
implies that U1, U2,. . . , Ul must be all of the unbounded components of X −K proving (i).
The claim also implies that all but finitely many bounded components of X −K lie in N .

As ∪U (X −K) is open in X, its complement K ′ is closed in X. Also

K ′ = K ∪ B (X −K) ⊆ N ∪B1 ∪B2 ∪ · · · ∪Bk

where the latter is a finite union of compact spaces and thus is compact. So, K ′ is closed in
X and is contained in a compact subspace of X. Hence, K ′ is compact which proves (ii).

By (2.1), we have X − K = ⊔B (X −K) ⊔ U (X −K) and X − K ′ = ⊔U (X −K).
Lemma 2.6(ii) with Z = X −K and Y = X −K ′ implies that the components of X −K ′

are exactly the unbounded components of X −K. That proves (iii) and the lemma. �

Lemma 2.8 (Monotonicity). Let X be a generalized continuum, and let K ⊆ L be compacta
in X. Then: (i) each unbounded component of X−L lies in a unique unbounded component
of X − K, (ii) each unbounded component of X − K contains at least one unbounded
component of X − L, (iii) there is a canonical surjection U (X − L) ։ U (X −K) of finite
sets, (iv) 0 ≤ |U (X −K)| ≤ |U (X − L)| <∞, and (v) if K ⊆ L◦, then K ′ ⊆ (L′)◦.

Proof. AsK ⊆ L, we have X−L ⊆ X−K. Let U be an unbounded component of X−L. As
U is connected, U is contained in a unique component UK of X −K. As U is unbounded,
UK is unbounded proving (i). Next, let V be an unbounded component of X − K. By
conclusion (ii) of Lemma 2.7, L′ is compact. As V is unbounded, V meets at least one
unbounded component of X−L. If C is any such unbounded component of X−L, then (i)
implies that C is contained in V , proving (ii). Define the function U (X − L)→ U (X −K)
by U 7→ UK . That function is well-defined by (i), is surjective by (ii), and has finite domain
and codomain by conclusion (i) of Lemma 2.7, which proves (iii). Conclusion (iv) follows
immediately from (iii).

Lastly, assumeK ⊆ L◦. To prove (v), we must show thatK and each bounded component of
X −K lie in (L′)◦. First, L ⊆ L′ implies that K ⊆ L◦ ⊆ (L′)◦. Second, let B ∈ B (X −K).
Conclusion (i) of Lemma 2.5 implies that B is open in X, so it suffices to show that B ⊆ L′.
Thus, it suffices to show that B is disjoint from each unbounded component of X −L. Let
U ∈ U (X − L). Then, U ⊆ UK ∈ U (X −K) by (i). As B ∈ B (X −K) is disjoint from
UK ∈ U (X −K), we see that B is disjoint from U proving (v). �

Theorem 2.9 (Existence of efficient compact exhaustion). Let X be a generalized contin-
uum. Then, X admits an efficient exhaustion by compacta {Ki}.

Proof. The compact case is covered by Remarks 2.2(d). So, assume that X is noncompact.

Observe that each point p ∈ X has a connected, bounded, open neighborhood Up in X.
To see that, local compactness of X yields a compactum Kp ⊆ X containing an open
neighborhood Vp of p. Local connectedness of X yields a connected, open neighborhood



ENDS AND END COHOMOLOGY 9

Up ⊆ Vp of p. Then, Up ⊆ Kp implies that Up ⊆ Kp. As Kp is compact and X is Hausdorff,

Kp is closed in X. So, Kp = Kp is compact. Thus, Up is a closed subspace of the compactum
Kp and hence is compact. Therefore, Up is a connected, bounded, open neighborhood of p
in X as desired.

As X is σ-compact, X = L1 ∪ L2 ∪ · · · is a countable union of compacta. By compactness,
each Li is covered by finitely many connected, bounded, open sets Up. Reindexing, X =
U1 ∪ U2 ∪ · · · where each Ui is connected, bounded, and open in X. Note that as X is
noncompact and each Ui is bounded in X, no finite collection of the Ui cover X.

Reindex the Ui so that for each integer j ≥ 2, Uj meets U1 ∪ U2 ∪ · · · ∪ Uj−1. To achieve
that, leave the index on U1 unchanged and proceed inductively. Let m ≥ 2 be the minimal
index such that Um meets U1. Such an m exists since otherwise U1 and ∪i≥2Ui separate X.
Swap the indices on U2 and Um, so U2 meets U1. Assume that for some integer k ≥ 2, the
desired property holds for each j = 2, 3, . . . , k. Let m ≥ k + 1 be the minimal index such
that Um meets U1 ∪ U2 ∪ · · · ∪ Uk. Such an m exists since otherwise U1 ∪ U2 ∪ · · · ∪ Uk and
∪i≥k+1Ui separate X. Swap the indices on Uk+1 and Um, so Uk+1 meets U1 ∪U2 ∪ · · · ∪Uk.
That completes our reindexing of the Ui.

For each i ∈ Z+, define Ji = U1 ∪ U2 ∪ · · · ∪ Ui. So, {Ji} is a nested sequence of connected,
bounded, open subspaces of X that cover X. Pass to a subsequence—still denoted {Ji}—so
that further Ji ⊆ Ji+1 for each i ∈ Z+. That is possible since each Ji is compact and is

covered by the open sets Ji+1, Ji+2, Ji+3, . . .. For each i ∈ Z+, let Ki = Ji
′
be the bounded

filling of Ji in X.

We claim that {Ki} is a desired efficient exhaustion of X by compacta. To prove that claim,
each Ki is compact since Ji is bounded and by conclusion (ii) of Lemma 2.7. Each Ki is
connected since Ji is connected, the closure of a connected subspace is connected, and by
conclusion (vi) of Lemma 2.5. Conclusion (iii) of Lemma 2.7 implies that each component
of X−Ki is unbounded. In particular, each Ki is an efficient compactum in X. As Ji ⊆ Ki

and the Ji cover X, the Ki cover X. As Ji ⊆ Ji+1 ⊆ Ji+1 and Ji+1 is open in X, we

have Ji ⊆ Ji+1 ⊆ Ji+1
◦
. By Lemma 2.8 (monotonicity), we get Ji

′
⊆

(
Ji+1

′
)◦

. That is,

Ki ⊆ K
◦
i+1 proving the claim and the theorem. �

3. End spaces

The topological theory of ends of spaces was initiated by Freudenthal in his 1931 the-
sis [Fre31]. Ends were further studied by Freudenthal [Fre42] and Hopf [Hop44] in the
1940’s1 and they now play a fundamental role in the study of noncompact spaces—see
Peschke [Pes90] and Guilbault [Gui16]. In this section, we review pertinent topological
definitions and results necessary for our purposes. For further references on ends of spaces,
see Raymond [Ray60], Siebenmann’s thesis [Sie65, Ch. 1], Porter’s chapter [Por95, §2], and
the books by Hughes and Ranicki [HR96, Ch. 1], Baues and Quintero [BQ01, Ch. I §9], and
Geoghegan [Geo08, §13.4].

1As a historical aside, Freudenthal completed his pioneering thesis on ends and topological groups before
he approached Hopf to be his advisor [Sam99, p. 578]. For further reading on Freudenthal’s impacts on
topology—including suspension and reduced cohomology, ends of spaces, and direct and inverse limits—see
Dieudonné [Die89, pp. 217 & 364] and van Est [vE93, vE99].
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Let X be a space with a compact exhaustion {Ki}. For each i, let Vi = X −Ki and write{
V j
i

}
= U (Vi) for the set of unbounded components of Vi. An end of X is a sequence

ε =
(
V j1
1 , V j2

2 , . . .
)
such that V j1

1 ⊇ V j2
2 ⊇ · · ·

2. Let E (X; {Ki}) denote the set of ends

of X with respect to the compact exhaustion {Ki}. The number of ends of X equals the
cardinality of E (X; {Ki})—which is independent of the compact exhaustion by Lemma 3.2
ahead. Lemma 2.8 (monotonicity) yields the inverse system3

(3.1) U (V1) և U (V2) և U (V3) և · · ·

of finite sets with surjective bonding functions. The inverse limit of (3.1) equals the set of
ends of X. That is, lim

←−
U (Vi) = E (X; {Ki}).

Lemma 3.1. Let X be a generalized continuum and let {Ki} be a compact exhaustion of X.
If V l

k is an unbounded component of Vk = X−Kk for some k ∈ Z+, then there exists at least

one end ε = (W1,W2, . . .) ∈ E (X; {Ki}) such that Wk = V l
k . The terms W1,W2, . . . ,Wk−1

in ε are uniquely determined by Wk = V l
k .

Proof. To construct such a sequence ε, Lemma 2.8 (monotonicity) uniquely determines the

terms precedingWk = V j
k . Inductively apply the monotonocity lemma to show the existence

of appropriate terms following Wk. �

Lemma 3.2. Let X be a generalized continuum and let {Ki} and {Li} be compact exhaus-
tions of X. Then, there is a bijection E (X; {Ki})→ E (X; {Li}).

Proof. First, consider a subsequence {Kik} of {Ki}. The natural function σ : E (X; {Ki})→

E (X; {Kik}) is defined by
(
V ji
i

)
7→

(
V

jik
ik

)
. By Lemma 3.1, σ has a unique inverse and,

hence, is a bijection.

Next, we shuffle the exhaustions {Ki} and {Li}. To do so, replace {Ki} and {Li} with
subsequences such that Ki ⊆ L◦

i and Li ⊆ K◦
i+1 for each i ∈ Z+. Define the compact

exhaustion {Ji} of X by J2i−1 = Ki and J2i = Li for each i ∈ Z+. Both {Ki} and {Li} are
subsequences of {Ji}. So, we have bijections

E (X; {Ki})← E (X; {Ji})→ E (X; {Li})

as desired. �

Remark 3.3 (The “W” argument). The technique used in the proof of Lemma 3.2 is note-
worthy. Given two sequences, one passes to appropriate subsequences that are themselves
subsequences of a common sequence. In more detail, suppose each sequence of some ad-
missible type determines an object. Suppose the objects determined are equivalent under
the operation of passing to a subsequence. Consider admissible sequences {Kk} and {Ll},
and suppose that there exist subsequences {Kki} and {Lli} such that the sequence {Ji} is

2That notation for an end was shown to us by Craig Guilbault. It inspired our notation for basic open
sets in the end space and the endpoint compactification.

3For background on inverse systems and inverse limits, see Eilenberg and Steenrod [ES52, Ch. VIII] and
Massey [Mas78, A.1 & A.3].
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admissible where J2i−1 = Kki and J2i = Lli for each i ∈ Z+. Those sequences form a “W”
shaped pattern

(3.2)

{Kk} {Ji} {Ll}

{Kki} {Lli}

where a downward arrow denotes the operation of passing to a subsequence. Thus, our
original sequences {Kk} and {Ll} determine equivalent objects. The proof of Lemma 3.2
used the fact that all compact exhaustions of X are related in that manner. The “W”
argument will be used to prove Corollary 3.11, solves an exercise on pro-isomorphism of
inverse systems in Guilbault [Gui16, Ex. 3.4.5], and is useful in general.

Let X be a generalized continuum. Define E(X) to be the set of ends of X with the
understanding that E(X) = E (X; {Ki}) for some compact exhaustion of X—which exists
by Theorem 2.9—and is well-defined up to bijection by Lemma 3.2. In fact, that bijection
is a canonical homeomorphism as will be shown in Corollary 3.11.

Theorem 3.4. Let X be a generalized continuum. Consider the set of ends E(X). Then:
(i) 0 ≤ |E(X)| ≤ |R|, (ii) if K is a compactum in X, then |E(X)| ≥ |U (X −K)|, (iii) X
is compact if and only if X has no ends, and (iv) X has finitely many ends if and only if
cofinitely many of the bonding surjections in (3.1) are bijections.

Proof. For (i), use the definition of an end and the inverse system (3.1) of finite sets and
surjections. Next, choose k ∈ Z+ such that K ⊆ Kk. Then, |U (X −K)| ≤ |U (X −Kk)| ≤
|E(X)| where the first inequality holds by Lemma 2.8 (monotonicity) and the second holds
by Lemma 3.1. That proves (ii). For (iii), Theorem 2.9 and Lemma 3.2 imply that we may
assume {Ki} is an efficient compact exhaustion of X. By Remarks 2.2(d), X is compact if
and only if X = Ki for each i ∈ Z+. The latter means the sets in the inverse system (3.1)
are empty, which proves (iii). For the forward implication of (iv), if infinitely many bonding
surjections in (3.1) are not bijections, then the sets U (X −Ki) have unbounded (finite)
cardinalities and (ii) implies that E(X) is infinite. For the reverse implication of (iv), the
hypothesis allows us to pass to a subsequence of {Ki} so that all bonding surjections in (3.1)
are bijections. Thus, |E(X)| = |U (X −K1)| is finite. �

Let X be a generalized continuum. Informally, Freudenthal’s endpoint compactification

F (X) of X is obtained by adding one point to each end of X. We present some examples
before the precise definition.

Examples 3.5.

(a) If X is compact, then F (X) = X by Theorem 3.4(iii).

(b) If X is one-ended, then F (X) is homeomorphic to Alexandroff’s one-point compact-
ification of X (see the end of Section 5).

(c) Evidently, E ([0,∞)) = {•} is a one-point space and F ([0,∞)) ≈ [0, 1]. Also,
E (R) = {±∞} is a two-point discrete space and F (R) ≈ [0, 1]. For each n ≥ 2,
E (Rn) = {•} is a one-point space and F (Rn) ≈ Sn.
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(d) If X is the thrice punctured 2-sphere, then E(X) is a three-point discrete space and
F (X) ≈ S2.

(e) Let X be the infinite comb space depicted in Figure 3.1. Namely, X is the subspace

……

Figure 3.1. Infinite comb space (left) and its endpoint compactification (right).

of R2 equal to (0, 1] × {0} union the vertical intervals {1/i} × [0, 1/i) for i ∈ Z+.
Then, F (X) is homeomorphic to the compact subspace of R2 depicted in Figure 3.1
(right), and E(X) is homeomorphic to {0} ∪ {1/i | i ∈ Z+} ⊆ R.

(f) If X is the infinite binary tree depicted in Figure 3.2, then E(X) is the Cantor set.

… … … … … … … …

Figure 3.2. Infinite binary tree (left) and its endpoint compactification (right).

More precisely, let {Ki} be a compact exhaustion of a generalized continuum X. Define the

set F (X; {Ki}) = X ⊔ E (X; {Ki}). Let Vi = X −Ki and
{
V j
i

}
= U (Vi) for each i ∈ Z+.

Given an unbounded component V l
k of some Vk, define the set of ends4

(3.3) EV l
k =

{
(W1,W2,W3, . . .) ∈ E (X; {Ki}) |Wk = V l

k

}

which is nonempty by Lemma 3.1. Consider the collection of all EV l
k for k ∈ Z+ and

1 ≤ l ≤ |U (Vk)|. Those sets cover E (X; {Ki}), and if two of them meet, then one contains
the other by Lemma 3.6 below. So, they form a basis for a topology on E (X; {Ki}). The
space of ends of X is E (X; {Ki}) equipped with that topology. Given some V l

k , define
the set

(3.4) FV l
k = V l

k ⊔ EV
l
k ⊆ F (X; {Ki})

One may readily verify that those sets together with all open sets in X form a basis for
a topology on F (X; {Ki}). Freudenthal’s endpoint compactification ofX is F (X; {Ki})
equipped with that topology. Note that the subspace topology on E (X; {Ki}) ⊆ F (X; {Ki})
equals the topology generated by the basis (3.3).

4Useful mnemonic: EV l
k for end and for kth term equal to V l

k .
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Lemma 3.6. In the setup of the preceding paragraph, consider unbounded components V j
i

and V l
k where i ≤ k. Then, the following are equivalent: (i) V j

i meets V l
k , (ii) V

j
i contains

V l
k , (iii) EV j

i meets EV l
k , (iv) EV j

i contains EV l
k , (v) FV j

i meets FV l
k , and (vi) FV j

i

contains FV l
k .

Proof. By Lemma 2.8 (monotonicity), (i) implies (ii). As components are nonempty, (ii)

implies (i). If ε = (W1,W2, . . .) ∈ EV
j
i ∩ EV

l
k , then V

j
i = Wi ⊇ Wk = V j

k . So, (iii) implies

(ii). If V j
i ⊇ V

l
k , then Lemma 3.1 shows that EV j

i ⊇ EV
l
k . So, (ii) implies (iv). Lemma 3.1

shows that EV l
k is nonempty, so (iv) implies (iii). Therefore, (i)–(iv) are equivalent. To

complete the proof, recall the definition (3.4). Thus: (i) implies (v), (v) implies (i) or (iii),
and (ii) and (iv) if and only if (vi). �

Theorem 3.7 (Freudenthal). Let X be a generalized continuum and let {Ki} be a compact
exhaustion of X. Then, the space of ends E (X; {Ki}) is Hausdorff, totally separated5, and
compact.

Proof. Let ε =
(
V j1
1 , V j2

2 , . . .
)
and ε′ =

(
V l1
1 , V

l2
2 , . . .

)
be distinct ends of X. Then, V jm

m 6=

V lm
m for some m ∈ Z+. By Lemma 3.6, the basic open sets EV jm

m ∋ ε and EV lm
m ∋ ε′ are

disjoint, proving E (X; {Ki}) is Hausdorff. Further, the complement in E (X; {Ki}) of any

basic open set EV b
a equals ⊔c 6=bEV

c
a which is open in E (X; {Ki}). Thus, ε ∈ EV jm

m and

ε′ ∈ E (X; {Ki})− EV
jm
m , proving E (X; {Ki}) is totally separated.

Suppose, by way of contradiction, that E (X; {Ki}) is not compact. Then, there exists
an open cover {Uα}α∈S of E (X; {Ki}) with no finite subcover. For each i ∈ Z+, the set{
V j
i

}
= U (Vi) is finite by Lemma 2.7(i) and, thus,

{
EV j

i

}
is a finite set of disjoint basic

open sets that cover E (X; {Ki}). So, there exists EV j1
1 not covered by finitely many Uα.

There also exists V j2
2 ⊆ V

j1
1 such that EV j2

2 is not covered by finitely many Uα. Inductively,

we obtain V j1
1 ⊇ V

j2
2 ⊇ · · · such that no EV ji

i is covered by finitely many Uα. Those nested

components determine an end ε =
(
V j1
1 , V j2

2 , . . .
)
. As the Uα cover E (X; {Ki}), there

exists β ∈ S such that ε ∈ Uβ. There exists a basic open neighborhood EV l
k of ε contained

in Uβ. That implies V jk
k = V l

k and EV jk
k = EV l

k . But, EV jk
k is not covered by finitely

many Uα whereas EV l
k is covered by Uβ alone. That contradiction proves E (X; {Ki}) is

compact. �

Theorem 3.8 (Freudenthal). Let X be a generalized continuum and let {Ki} be a compact
exhaustion of X. Then, the endpoint compactification F (X; {Ki}) is a compact generalized
continuum, and the inclusion ι : X →֒ F (X; {Ki}) is an open embedding with dense image
in F (X; {Ki}).

Proof. To show F (X; {Ki}) is Hausdorff, consider three cases: two points in X, two points
in E(X), and one point in each of X and E(X). The first case follows since X is Hausdorff.

5A space Y is totally separated provided: for each pair of distinct points in Y , there exist disjoint open
neighborhoods of those points whose union is Y . A space is totally disconnected provided its components
are points. Totally separated implies totally disconnected.
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The second case follows as in the proof of Theorem 3.7 except using the basic open sets

FV jm
m ∋ ε and FV lm

m ∋ ε′. For the third case, let x ∈ X and ε =
(
V j1
1 , V j2

2 , . . .
)
∈

E (X; {Ki}). As x ∈ K◦
k for some k ∈ Z+, FV

jk
k is a basic open neighborhood of ε in

F (X; {Ki}) disjoint from Kk, as desired.

The inclusion ι is injective, has image X, is open, and is continuous since each V l
k is open

in X by Lemma 2.5(i). Hence, ι is an open embedding.

We claim that EV l
k ⊆ ClF (X;{Ki})V

l
k for each V l

k ∈ U (Vk). Let ε =
(
V j1
1 , V j2

2 , . . .
)
∈ EV l

k .

It suffices to prove that each basic open neighborhood of ε in F (X; {Ki}) meets V l
k . So,

consider FV b
a = V b

a ∪EV
b
a a basic open neighborhood of ε in F (X; {Ki}). We have ε ∈ EV b

a

and Lemma 3.6 implies that V b
a meets V l

k . Hence, FV
b
a meets V l

k , proving the claim.

The claim implies that each basic open set FV l
k = V l

k ⊔ EV
l
k is connected. Indeed, V l

k is
connected inX and in F (X; {Ki}). Now, apply the claim and Munkres [Mun18, Thm. 23.4].
It follows readily that F (X; {Ki}) is locally connected.

The claim also implies that ClF (X;{Ki})X = F (X; {Ki}). Indeed, if ε ∈ E (X; {Ki}), then ε

lies in some basic open set EV l
k and hence ε ∈ ClF (X;{Ki})V

l
k . As V

l
k ⊆ X, ClF (X;{Ki})V

l
k ⊆

ClF (X;{Ki})X. Hence, ε ∈ ClF (X;{Ki})X, as desired. In particular, X is dense in F (X; {Ki})
and F (X; {Ki}) is connected.

To see that F (X; {Ki}) is compact, let {Uα}α∈S be an open cover of F (X; {Ki}). Consider,

for all α ∈ S, the collection of all basic open sets FV l
k contained in some Uα. That collection

covers E (X; {Ki})—a compact subspace of F (X; {Ki}) by Theorem 3.7. Therefore, there

exists L =
{
FV l1

k1
, . . . , FV ln

kn

}
a finite cover of E (X; {Ki}) such that FV li

ki
⊆ Uαi

for each

i = 1, . . . , n. Let k = max {k1, . . . , kn}. Then, L must cover every V a
k ∈ U (Vk) (otherwise,

some V a
k is not covered by L, Lemma 3.6 implies that EV a

k is disjoint from L, and EV a
k 6= ∅

contains an end not covered by L, a contradiction). Hence, Uα1
, . . . , Uαn cover ∪U (Vk) ∪

E (X; {Ki}). The bounded filling K ′
k of Kk in X is compact by Lemma 2.7(ii). So, finitely

many Uα cover K ′
k. Taken together, finitely many Uα cover F (X; {Ki}). Thus, F (X; {Ki})

is compact and, hence, locally compact and σ-compact. It follows that F (X; {Ki}) is a
generalized continuum. �

Lemma 3.9. Let X be a generalized continuum, let {Ki} be a compact exhaustion of X, and
let {Kik} be a subsequence of {Ki}. Then, the bijection σ : E (X; {Ki})→ E (X; {Kik}) in
Lemma 3.2 is a homeomorphism.

Proof. As above, EV l
k denotes a basic open set in E (X; {Ki}). Each basic open set in

E (X; {Kik}) has the form

(3.5)
{
(Z1, Z2, Z3, . . .) ∈ E (X; {Kik}) | Zm = V n

im

}

for some unbounded component V n
im

of Vim . Recalling the bijection σ from Lemma 3.2, it is

straightforward to verify that σ
(
EV n

im

)
equals the basic open set (3.5). Therefore, σ−1 sends

each basic open set in E (X; {Kik}) to a basic open set in E (X; {Ki}). Thus, σ
−1 is open

and σ is continuous. Hence, it suffices to show that σ is open or closed. By Theorem 3.7,
E (X; {Ki}) is compact and E (X; {Kik}) is Hausdorff. So, σ is closed. Alternatively, we
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may show σ is open using bases. We already observed that σ
(
EV n

im

)
equals the basic open

set (3.5). Consider a basic open set EV b
a such that a 6= im for any m ∈ Z+. There exists

l ∈ Z+ minimal such that a < il. Let V c1
il
, . . . , V cn

il
be the unbounded components of Vil

contained in V b
a . So, EV

b
a = EV c1

il
⊔ · · · ⊔EV cn

il
and σ

(
EV b

a

)
= σ

(
EV c1

il

)
⊔ · · · ⊔σ

(
EV cn

il

)

where the latter is a disjoint union of finitely many basic open sets by the observation. That
proves σ is open. �

Lemma 3.10. Let X be a generalized continuum, let {Ki} be a compact exhaustion of X,
and let {Kik} be a subsequence of {Ki}. Define τ : F (X; {Ki}) → F (X; {Kik}) piecewise
to be id : X → X and σ : E (X; {Ki})→ E (X; {Kik}). Then, τ is a homeomorphism.

Proof. By Lemma 3.2, τ is a bijection. We claim that τ−1 is open. It suffices to verify that
on a basis for the topology on F (X; {Kik}) and we consider the basis defined at (3.4). As
τ is the identity on X, it suffices to consider basic open sets that meet E (X; {Kik}). As
above, FV l

k denotes a basic open set in F (X; {Ki}). Each basic open set in F (X; {Kik})
that meets E (X; {Kik}) has the form

(3.6) V n
im ⊔

{
(Z1, Z2, Z3, . . .) ∈ E (X; {Kik}) | Zm = V n

im

}

for some unbounded component V n
im

of Vim . As in the proof of Lemma 3.9, it is straight-

forward to verify that τ
(
FV n

im

)
equals the basic open set (3.6). Therefore, τ−1 sends the

basic open set (3.6) to the basic open set FV n
im
. Hence, τ−1 is open, proving the claim.

That implies τ is a continuous bijection. Hence, it suffices to show that τ is open or closed.
By Theorem 3.8, F (X; {Ki}) is compact and F (X; {Kik}) is Hausdorff. So, τ is closed.
Alternatively, we may show τ is open using bases exactly as in the proof of Lemma 3.9
except using FV b

a in place of EV b
a . �

Corollary 3.11. Let X be a generalized continuum and let {Ki} and {Li} be compact ex-
haustions of X. Then, there exists a unique homeomorphism h : F (X; {Ki})→ F (X; {Li})
such that h| : X → X is the identity. Hence, h| : E (X; {Ki})→ E (X; {Li}) is a canonical
homeomorphism.

Proof. For existence of h, Lemma 3.10 yields a desired homeomorphism for a subsequence
of a given compact exhaustion. The general case follows by four applications of passing to
a subsequence and using the “W” argument from Remark 3.3. By Theorem 3.8, X is dense
in F (X; {Ki}) and the codomain F (X; {Li}) of h is Hausdorff. So, h is unique. �

Let X be a generalized continuum. Let F (X) denote Freudenthal’s endpoint compactifi-

cation of X and E(X) denote the end space of X. By definition, F (X) = F (X; {Ki}) and
E(X) = E (X; {Ki}) for some compact exhaustion of X—which exists by Theorem 2.9. The
spaces F (X) and E(X) are well-defined up to canonical homeomorphism by Corollary 3.11.
Next, we show that each proper map of generalized continua induces a unique map of their
endpoint compactifications and a unique map of their end spaces.

Lemma 3.12. Let X be a space with a compact exhaustion {Ki}. If f : Y → X is a proper
map, then

{
f−1 (Ki)

}
is a compact exhaustion of Y .
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Proof. As f is proper, each f−1 (Ki) is compact. Evidently, the spaces f−1 (Ki) are nested
and cover Y . As Ki ⊆ K◦

i+1, we have f−1 (Ki) ⊆ f−1
(
K◦

i+1

)
. The latter subspace is open

in Y and contained in f−1 (Ki+1). Thus

f−1 (Ki) ⊆ f
−1

(
K◦

i+1

)
⊆ f−1 (Ki+1)

◦

as desired. �

In Lemma 3.12, one cannot ensure that
{
f−1 (Ki)

}
is efficient even if {Ki} is efficient—see

Example 4.1.

Lemma 3.13. Let f : Y → X be a proper map of generalized continua. Then, there exists
a unique map F (f) : F (Y ) → F (X) such that F (f)|Y = f . That map F (f) sends E(Y )
into E(X). Hence, there is a canonical map E(f) = F (f)| : E(Y ) → E(X) induced by f .
Further, any choices of compact exhaustions of X yield a canonical commutative diagram

(3.7)

F
(
Y ;

{
f−1(Ki)

})
F (X; {Ki})

F
(
Y ;

{
f−1(Li)

})
F (X; {Li})

F (f)

≈ ≈

F (f)

where the vertical homeomorphisms are given by Corollary 3.11.

Proof. By Theorem 2.9, there exists an efficient compact exhaustion {Ki} of X. By
Lemma 3.12,

{
f−1 (Ki)

}
is a compact exhaustion of Y . Basic open sets in F (X) meet-

ing E(X) will be denoted FV l
k as usual. For each i ∈ Z+, we have X = Ki ⊔ Vi where

each component V j
i of Vi is unbounded. So, Y = f−1(Ki) ⊔ f

−1(Vi) where f−1(Vi) may
contain both bounded and unbounded components. We denote an unbounded component

of f−1(Vi) by U
j
i .

For existence of F (f), define F (f) on Y to be f : Y → X. Define F (f) on E(Y ) as follows.

Let α =
(
U j1
1 , U

j2
2 , . . .

)
∈ E

(
Y ;

{
f−1 (Ki)

})
be an end of Y . For each i ∈ Z+, f

(
U ji
i

)
lies

in a unique component V ji
i of Vi by connectedness. (Even if {Ki} is not efficient, f

(
U ji
i

)

must lie in an unbounded component of Vi since f is proper and U ji
i is unbounded.) As α

is an end, we have U j1
1 ⊇ U

j2
2 ⊇ U

j3
3 ⊇ · · · . Therefore, we have

(3.8)
f
(
U j1
1

)
f
(
U j2
2

)
f
(
U j3
3

)
· · ·

V j1
1 V j2

2 V j3
3 · · ·

⊆

⊇

⊆

⊇

⊆

⊇

Lemma 3.6 implies that V j1
1 ⊇ V j2

2 ⊇ V j3
3 ⊇ · · · . Thus, β =

(
V j1
1 , V j2

2 , . . .
)
∈ E (X; {Ki})

is an end of X. We define F (f)(α) = β.

We verify F (f) is continuous using the standard basis for F (X). By our piecewise definition
of F (f), we need only consider basic open sets FV l

k . Recall that FV l
k = V l

k ⊔ EV
l
k . So,

F (f)−1
(
FV l

k

)
= f−1

(
V l
k

)
⊔F (f)−1

(
EV l

k

)
. Of the components of f−1(V l

k), let U
1
k , . . . , U

mk

k
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be the unbounded ones and let B be the union of the bounded ones. So, f−1
(
V l
k

)
=⊔mk

b=1 U
b
k ⊔B. By the defintion of F (f) on ends, we have

F (f)−1
(
EV l

k

)
=

{
(Z1, Z2, . . .) ∈ E

(
Y ;

{
f−1 (Ki)

})
| f (Zk) ⊆ V

l
k

}
=

mk⊔

b=1

EU b
k

Hence, F (f)−1
(
FV l

k

)
=

⊔mk

b=1 FU
b
k ⊔ B is the disjoint union of B and basic open sets of

F (Y ), which is open in F (Y ). Therefore, F (f) is continuous.

Uniqueness of F (f) such that F (f)|Y = f follows from the facts that, by Theorem 3.8, Y
is dense in F (Y ) and the codomain F (X) of F (f) is Hausdorff. �

Remark 3.14. Uniqueness in Lemma 3.13 proves that any continuous extension of f to
F (Y ) → F (X) must send E(Y ) to a subset of E(X). That also follows directly using
properness of f and local compactness of X.

The next lemma presents a useful criterion for verifying an end lies in the image of the
induced map on end compactifications.

Lemma 3.15. Let f : Y → X be a proper map of generalized continua. Consider an

end ε =
(
V j1
1 , V j2

2 , . . .
)
∈ E (X; {Ki}) where {Ki} is a compact exhaustion of X. Then,

ε ∈ ImF (f) if and only if Im f meets V ji
i for each i ∈ Z+.

Proof. For the forward implication, we are given that there exists α =
(
U j1
1 , U

j2
2 , . . .

)
∈

E
(
Y ;

{
f−1 (Ki)

})
such that F (f)(α) = ε. By the definition of F (f), f(U ji

i ) ⊆ V ji
i for each

i ∈ Z+. So, Im f meets V ji
i for each i ∈ Z+.

We prove the contrapositive of the reverse implication. By Theorem 3.8, F (Y ) is compact
and F (X) is Hausdorff. By Lemma 3.13, F (f) is continuous. So, F (f) is a closed map. As

ε /∈ ImF (f), there exists, for some i ∈ Z+, a basic open neighborhood FV ji
i = V ji

i ⊔ EV
ji
i

of ε in F (X) that is disjoint from ImF (f). In particular, V ji
i is disjoint from Im f . �

Theorem 3.16. Freudenthal’s end compactification is a covariant functor F from the cate-
gory of generalized continua and proper maps to the category of compact generalized continua
and (proper) maps. Freudenthal’s end space is a covariant functor E from the category of
generalized continua and proper maps to the category of Hausdorff, totally separated, com-
pact spaces and (proper) maps.

Proof. By the results in this section, it remains to show that F and E preserve identity
maps and compositions of proper maps. Consider id : X → X where X is a generalized
continuum. By Theorem 3.8, X is dense in F (X) and F (X) is Hausdorff. Thus, F (id) = id
and E (id) = F (id)| = id. Consider proper maps g : Z → Y and f : Y → X where X, Y ,
and Z are generalized continua. Both F (g ◦ f) and F (g) ◦ F (f) are maps F (Z) → F (X)
that extend g ◦ f : Z → X. By Theorem 3.8, Z is dense in F (Z) and F (X) is Hausdorff.
Hence, F (g ◦ f) = F (g) ◦ F (f). As E(g ◦ f) = F (g ◦ f)| : E(Z)→ E(X), E(g) = F (g)| :
E(Z)→ E(Y ), and E(f) = F (f)| : E(Y )→ E(X), we get E (g ◦ f) = E (g) ◦ E (f). �
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Example 3.17. While the plane R
2 properly retracts to the nonnegative x-axis, the plane

does not properly retract to the entire x-axis R × {0}. Suppose, by way of contradiction,
that ρ : R2 → R × {0} is a proper retract. Let i : R × {0} →֒ R

2 be the inclusion map,
which is proper since R×{0} is closed in R

2. Apply the end functor E to the commutative
diagram

(3.9) R× {0} R
2

R× {0}i

id

ρ

to get that the identity map between a two-point space factors through a one-point space,
a contradiction.

Next, we show that properly homotopic maps induce the same map on end spaces. For that
purpose, we show that if Y and J are generalized continua and J is compact, then the end
spaces of Y and Y × J are canonically homeomorphic.

Lemma 3.18. Let Z and J be spaces where J is compact and connected. Then: (i) each
component of Z × J has the form C × J for some component C of Z, and (ii) a component
C × J of Z × J is bounded if and only if C is bounded in Z.

Proof. Let C be a component of Z. As C×J is connected, C×J lies in a unique component
E of Z×J . Let p : Z×J → Z be projection which is continuous. As {z}×J is connected for
each z ∈ Z, we see that E = p(E)× J . Thus, C ⊆ p(E), p(E) is connected, and p(E) ⊆ C.
Therefore, E = C × J proving (i). For (ii), note that C × J = C × J . �

The proof of the following lemma is straightforward.

Lemma 3.19. If A and B are generalized continua, then A×B is a generalized continuum.

Lemma 3.20. Let Y and J be generalized continua where J is compact. Then: (i) Y × J
is a generalized continuum, (ii) if {Ki} is a compact exhaustion of Y , then {Ki × J} is a
compact exhaustion of Y ×J , and (iii) if {Ki} is an efficient compact exhaustion of Y , then
{Ki × J} is an efficient compact exhaustion of Y × J .

Proof. Lemma 3.19 implies (i). For (ii), note that Ki ⊆ K
◦
i+1 for each i ∈ Z+, so Ki × J ⊆

K◦
i+1 × J . The latter subspace is open in Y × J and contained in Ki+1 × J . Thus

Ki × J ⊆ K
◦
i+1 × J ⊆ (Ki+1 × J)

◦

as desired. Lastly, let {Ki} be an efficient compact exhaustion of Y . By (ii), {Ki × J} is a
compact exhaustion of Y × J . For each i ∈ Z+, Ki is connected, so Ki × J is connected.
Notice that Y × J − Ki × J = (Y −Ki) × J as spaces. As Y − Ki has only unbounded
components, Lemma 3.18 with Z = Y −Ki implies that Y ×J−Ki×J has only unbounded
components, proving (iii). �

Lemma 3.21. Let Y and J be generalized continua where J is compact. For an arbitrary
but fixed t ∈ J , define ιt : Y ֌ Y × J by ιt(y) = (y, t). Let p : Y × J → Y be projection.
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Consider the commutative diagram

(3.10) Y Y × J Y
ιt

id

p

Then: (i) p is a closed, proper map, (ii) ιt is a closed, proper map, and (iii) in the induced
diagram

(3.11) E(Y ) E(Y × J) E(Y )
E(ιt)

id

E(p)

E(p) is a homeomorphism and, hence, E(ιt) = E(p)−1 is a homeomorphism. In particular,
E(ιs) = E(ιt) for all s, t ∈ J .

Proof. By Lemma 3.20(i), Y × J is a generalized continuum. To see that p is closed,
use the fact that J is compact and the tube lemma [Mun18, p. 168]. The image of ιt is
Im ιt = Y ×{t} which is closed in Y ×J . A simple argument shows that ιt is closed. Observe
that for each A ⊆ Y × J , we have ι−1

t (A) = p (Im ιt ∩A). That observation, together with
the facts that Im ιt is closed in Y × J and Y and J are Hausdorff, show that ιt is proper.
Now, the end space functor E from Theorem 3.16 yields the commutative diagram (3.11).
That diagram implies that E(p) is surjective. By Theorem 3.16, E(p) is continuous with
compact domain and Hausdorff codomain. So, it suffices to prove that E(p) is injective.

By Theorem 2.9, there exists an efficient compact exhaustion {Ki} of Y . By Lemma 3.20(iii),
{Ki × J} is an efficient compact exhaustion of Y × J . For each i ∈ Z+, Vi = Y − Ki

has components
{
V j
i

}
and all are unbounded (since Ki is efficient). By Lemma 3.18,

Y × J − Ki × J = Vi × J has components
{
V j
i × J

}
and all are unbounded. Sup-

pose α = (V a1
1 × J, V

a2
2 × J, . . .) and β =

(
V b1
1 × J, V

b2
2 × J, . . .

)
are ends of Y × J and

E(p)(α) = E(p)(β). For each i ∈ Z+, p (V
ai
i × J) = V ai

i and p
(
V bi
i × J

)
= V bi

i . So,

E(p)(α) = (V a1
1 , V a2

2 , . . .) and E(p)(β) =
(
V b1
1 , V b2

2 , . . .
)
. As E(p)(α) = E(p)(β), we see

that V ai
i = V bi

i for each i ∈ Z+. Hence, α = β and E(p) is injective, completing the
proof. �

Corollary 3.22. Let f, g : Y → X be proper maps of generalized continua. If f and g are
properly homotopic, then E(f) = E(g).

Proof. Let H : Y × I → X be a proper map such that H(y, 0) = f(y) and H(y, 1) = g(y)
for each y ∈ Y . Using the end space functor, we have commutative diagrams

(3.12)

Y E(Y )

Y × I X E(Y × I) E(X)

Y E(Y )

ι0

f

E(ι0)

E(f)

H E(H)

ι1

g

E(ι1)

E(g)
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By Lemma 3.21(iii), E(ι0) = E(ι1). Hence, (3.12) implies that E(f) = E(g) as desired. �

As an application of the theory of ends, the remainder of this section is devoted to proving
Freudenthal’s beautiful and fundamental theorem on the possible number of ends of a topo-
logical group. A space X—always assumed Hausdorff—equipped with a group structure is
a topological group provided the binary group operation and the unary inverse operation

(3.13)
X ×X X X X

(x, y) x · y x x−1

µ ι

are continuous. In any topological group X, we let e ∈ X denote the identity element—not
to be confused with an end of X. See Lee [Lee11, pp. 77–80 & 311–336] for an introduc-
tion to topological groups. If X is a topological group, then inversion ι : X → X is a
homeomorphism, as is left translation by each g ∈ X

(3.14) X X
x g · x

Lg

So, X acts on itself continuously, freely, and transitively by left translation. In particular,
X is topologically homogeneous [Lee11, p. 78].

Examples 3.23. The following are topological groups.

(a) Every group with the discrete topology.

(b) The unit circle S1 ⊆ C under multiplication.

(c) The unit sphere S3 ⊆ H in the real quaternions under multiplication.

(d) Euclidean space R
n under addition for each n ∈ Z+.

(e) The product of two topological groups.

(f) The real and complex general linear groups GL(n) and orthogonal groups O(n) for
each n ∈ Z+.

Note that the unit circle S1 ⊆ C has zero ends, R2 under addition has one end, and R under
addition has two ends. Freudenthal’s theorem states that every topological group—that is
path connected and a generalized continuum—has at most two ends. We encourage the
reader unfamiliar with Freudenthal’s theorem to skip forward to Theorem 3.29, grasp the
main idea of the proof (including why it does not apply to groups such as R2 and S1 ×R),
and then return here for further necessary details.

Lemma 3.24. Let X be a topological group. If A,B ⊆ X are compact, then A · B =
{a · b | a ∈ A and b ∈ B} and A−1 =

{
a−1 | a ∈ A

}
are compact.

Proof. As A×B is compact, µ (A×B) = A ·B is compact. As A is compact, ι (A) = A−1

is compact. �
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The action of a topological group X on itself by left translation is proper provided the
map

(3.15)
X ×X X ×X

(g, x) (g · x, x)

h

is proper (see Lee [Lee11, p. 319]).

Lemma 3.25. Let X be a topological group. Then, the action of X on itself by left trans-
lation is proper.

Proof. Let V ⊆ X be compact. Then, we have

h−1 (V × V ) = {(g, x) ∈ X ×X | g · x ∈ V and x ∈ V } ⊆
(
V · V −1

)
× V

and the latter space is compact by Lemma 3.24. As h−1 (V × V ) is also closed in X×X, we
get that h−1 (V × V ) is compact. Next, let K ⊆ X ×X be compact. Let pr1 : X ×X → X
and pr2 : X×X → X be the projection maps to the first and second coordinate respectively.
Let V = pr1(K)∪pr2(K) which is compact, and note that K ⊆ V ×V . As h−1(K) is closed
in X × X and contained in the compactum h−1(V × V ), we see that h−1(K) is compact,
as desired. �

Remark 3.26. The action of X on itself by left translation being proper does not imply
that the group operation µ : X × X → X is proper. Consider R under addition. On the
other hand, the converse of that implication is true (see also Lee [Lee11, p. 319]).

Corollary 3.27. Let X be a topological group. Then, for each compactum K ⊆ X, the
subspace

XK = {g ∈ X | g ·K ∩K 6= ∅} ⊆ X

is compact.

Proof. Let K ⊆ X be compact. By Lemma 3.25, the map h is proper. So, h−1(K × K)
is compact. Let pr1 : X × X → X be the projection map to the first coordinate. Then,
pr1

(
h−1(K ×K)

)
= XK is compact, as desired. �

Lemma 3.28. Let X be a path connected topological group. If g ∈ X, then left translation
Lg by g is properly homotopic to the identity Le = id : X → X.

Proof. As X is path connected, there exists a continuous path γ : [0, 1] → X from e to g.
Define H : X × I → X by H(x, t) = γ(t) · x. The function H is continuous since it equals
the following composition of maps

(3.16)
X × I X ×X X

(x, t) (γ(t), x) γ(t) · x

µ

Let K ⊆ X be compact. As H is continuous, H−1(K) is closed in X × I. Lemma 3.24

implies that (Im γ)−1 · K is compact. So,
(
(Im γ)−1 ·K

)
× I ⊆ X × I is compact. As

H−1(K) is contained in the compactum
(
(Im γ)−1 ·K

)
× I and is closed in X × I, we see

that H−1(K) is compact, as desired. �
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We now have the tools to prove Freudenthal’s fundamental theorem [Fre31].

Theorem 3.29 (Freudenthal). Let X be a path connected generalized continumm that is a
topological group. Then, X has at most two ends.

Proof. Suppose, by way of contradiction, that X has three ends ε1, ε2, and ε3. Let {Ki}
be an efficient compact exhaustion of X given by Theorem 2.9. By Theorem 3.4(iv), there
exists k ∈ Z+ such that Vk = X−Kk has three components V 1

k , V
2
k , and V

3
k , each unbounded

in X. See Figure 3.3 (left) where Kk is depicted in blue. Corollary 3.27 implies that XKk
is

X

K k
1

ε 1

ε 2

ε 3

Vk

2Vk

3Vk

X

ε 1

ε 2

ε 3

L g

L g
L g (K k )

−1

K k

2Vk

3Vk

Figure 3.3. Compactum Kk (blue) in three-ended space X (left). Image of
Kk (blue) under left translation Lg ofX and connected subspaceKk∪V

2
k ∪V

3
k

(yellow) of X.

compact. As X has an end, X is noncompact by Theorem 3.4(iii). So, there exists g ∈ X
such that g ·Kk is disjoint from Kk. That is, left translation Lg is a self-homeomorphism of
X that carries the connected compactum Kk into one of the three components V 1

k , V
2
k , or

V 3
k . Without loss of generality, assume Lg (Kk) ⊆ V

1
k as in Figure 3.3 (right). Lemma 3.28

implies that Lg and L−1
g = Lg−1 are both properly homotopic to the identity id : X → X.

Corollary 3.22 implies that Lg and L−1
g both induce the identity map on the end space of

X. Consider the subspace Kk ∪V
2
k ∪V

3
k of X depicted in yellow in Figure 3.3 (right). That

subspace is connected by Lemma 2.5(v). Thus, L−1
g carries Kk ∪ V

2
k ∪ V

3
k into one of the

components V 1
k , V

2
k , or V

3
k of X −Kk. As E

(
L−1
g

)
(ε2) = ε2, the definition of E

(
L−1
g

)
(see

Lemma 3.13) implies that L−1
g carries Kk ∪ V

2
k ∪ V

3
k into V 2

k . Similarly, E
(
L−1
g

)
(ε3) = ε3

implies that L−1
g carries Kk∪V

2
k ∪V

3
k into V 3

k . That contradiction completes the proof that
the topological group X cannot have three ends. It is straightforward to adapt the proof
to the general case where X has any number of ends greater than two. �

4. Compact exhaustions of maps

We consider spaces X containing a baseray. A baseray is a proper embedding r : [0,∞) ֌
X. A ray-based space is a pair (X, r) where X is a (necessarily noncompact) space and
r is a baseray. We often refer to r and its image in X interchangeably, where no confusion
should arise. It will be convenient to have an efficient compact exhaustion of X that
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simultaneously exhausts r. We prove a more general fact that we regard as an exhaustion
of a map.

Let f : Y → X be a map of spaces with image denoted Im f . A compact exhaustion {Ki} of
X is f-efficient provided: (i) {Ki} is an efficient compact exhaustion of X, (ii) {Im f ∩Ki}
is an efficient compact exhaustion of Im f , and (iii)

{
f−1 (Ki)

}
is a compact exhaustion of

Y .

In Theorem 4.5, we prove that each proper map f : Y → X of generalized continua admits
an f -efficient compact exhaustion. Note that part (iii) of the definition of f -efficient does
not require the compact exhaustion

{
f−1 (Ki)

}
of Y to be efficient. The next example

shows that conclusion is generally not possible. If f is also injective, then Theorem 4.5
shows that conclusion does hold.

Example 4.1. Consider the piecewise linear, proper map f : [0,∞) → R in Figure 4.1.
Here, f repeatedly doubles back moving three units positively and then two units negatively.

…

s

5 10 15

5

Figure 4.1. Graph of a piecewise linear, proper map f : [0,∞)→ R.

Let K ⊆ R be any compactum with s = supK ≥ 2. Notice that f−1(s) ⊆ f−1(K) ⊆
f−1 ([0, s]) where f−1 ([0, s]) has three connected components and each component meets
f−1(s). So, f−1(K) is disconnected and not efficient. Thus,

{
f−1 (Ki)

}
is never efficient

for any compact exhaustion {Ki} of R. We obtain examples in all dimensions by composing
f with the inclusion i : R→ R× R

k given by t 7→ (t, 0) or by taking the product of f with
the identity on [0, 1]k for any k ∈ Z+.

Lemma 4.2. Let f : Y → X be a proper map of generalized continua. Then: (i) f is a
closed map, and (ii) Im f is a generalized continuum.

Proof. As f is continuous, Y is connected, and X is Hausdorff, we get Im f is connected and
Hausdorff. As f is proper and X is locally compact, f is closed proving (i). In particular,
Im f is closed in X. So, Im f is σ-compact and locally compact. As f is closed and Im f is
closed in X, the restriction map f | : Y → Im f is closed. As f | is a closed, surjective map,
it is a quotient map. Thus, Im f is locally connected by Dugundji [Dug66, p. 125]. That
completes the proof of (ii). �

Lemma 4.3. Let X be a space with a compact exhaustion {Ki}. If A ⊆ X is closed, then
{A ∩Ki} is a compact exhaustion of A.
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Proof. As A is closed inX, X is Hausdorff, and eachKi is compact, we get A∩Ki is compact.
Evidently, the spaces A ∩Ki are nested and cover A. As Ki ⊆ K

◦
i+1, and A ∩K

◦
i+1 is open

in A and contained in A ∩Ki+1, we have

A ∩Ki ⊆ A ∩K
◦
i+1 ⊆ (A ∩Ki+1)

◦

as desired. �

Lemma 4.4. Let X be a space and A ⊆ X a closed subspace. Suppose we are given
efficient compact exhaustions {Ji} of X and {Li} of A. Then, there exists an efficient
compact exhaustion {Ki} of X such that {A ∩Ki} is a subsequence of {Li}. In particular,
{A ∩Ki} is an efficient compact exhaustion of A.

Proof. As X is Hausdorff and A is closed in X, the intersection of A with each compactum
in X is compact. In particular, A ∩ Ji is compact for each i ∈ Z+. Reasoning inductively,
we replace {Ji} and {Li} with subsequences so that

(4.1) Li ⊆ J
◦
i and A ∩ Ji ⊆ L

◦
i+1 for each i ∈ Z+

where J◦
i is the interior of Ji inX and L◦

i+1 is the interior of Li+1 in A. Figure 4.2 depicts the

X

A

J 2 J 1

L 2 L 1L 3

Figure 4.2. Closed subspace A of X and shuffled efficient compact exhaus-
tions {Li} of A and {Ji} of X.

resulting shuffled efficient compact exhaustions. For each i ∈ Z+, define Ki = (Ji ∪ Li+1)
′

to be the bounded filling of Ji ∪Li+1 in X. We will show that {Ki} is a desired exhaustion
of X.

Each Ji and Li is connected (hence, nonempty) and compact. For each i ∈ Z+, Ji and Li+1

contain Li, the former by (4.1). So, Ji∪Li+1 is connected and compact. By Lemmas 2.5(vi)
and 2.7(ii), Ki = (Ji ∪ Li+1)

′ is connected and compact. By Lemma 2.7(iii), X − Ki has
only unbounded components.

As Ji and Li+1 are both contained in J◦
i+1, the latter by (4.1), we get

Ji ∪ Li+1 ⊆ J
◦
i+1 ⊆ Ji+1 ∪ Li+2

As J◦
i+1 is open in X, the previous equation implies that Ji ∪ Li+1 ⊆ (Ji+1 ∪ Li+2)

◦.
Lemma 2.8 (monotonicity) implies that Ki ⊆ K◦

i+1. Hence, {Ki} is an efficient compact
exhaustion of X.

We claim that each bounded component of X − (Ji ∪ Li+1) is disjoint from A. Before we
prove that claim, we show it implies A ∩Ki = Li+1, which in turn implies the remaining
desired conclusions in the statement of the lemma. For each i ∈ Z+, we have

Ki = (Ji ∪ Li+1)
′ = (Ji ∪ Li+1) ∪ B (X − (Ji ∪ Li+1))
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where ∪B (X − (Ji ∪ Li+1)) is disjoint from A by the claim. Hence

A ∩Ki = A ∩ (Ji ∪ Li+1) = (A ∩ Ji) ∪ (A ∩ Li+1) = (A ∩ Ji) ∪ Li+1 = Li+1

where the third equality holds since Li+1 ⊆ A and the fourth holds by (4.1). So, it remains
to prove the claim.

Suppose, by way of contradiction, that a bounded component B of X− (Ji ∪ Li+1) meets A
for some i ∈ Z+. Then, B meets a component U of A−Li+1 that is necessarily unbounded
in A. We have U ⊆ A−Li+1 ⊆ X − (Ji ∪ Li+1) by (4.1). Thus, as U is connected and B is
a component of X − (Ji ∪ Li+1), we have U ⊆ B. As A is closed in X, the closure of U in
X equals the closure of U in A. However, U is unbounded in A and is bounded in X (since
U ⊆ B where B is bounded). That contradiction proves the claim and the lemma. �

Theorem 4.5. Let f : Y → X be a proper map of generalized continua. Then: (i) there
exists an f -efficient compact exhaustion {Ki} of X, and (ii) if, furthermore, f is injective,
then f is an embedding and

{
f−1 (Ki)

}
is an efficient compact exhaustion of Y .

Proof. By Lemma 4.2(ii), Im f is a generalized continuum. By Theorem 2.9, there exist
efficient compact exhaustions {Ji} of X and {Li} of Im f . By Lemma 4.2(i), Im f is closed
in X. By Lemma 4.4, there exists {Ki} an efficient compact exhaustion of X such that
{Im f ∩Ki} is an efficient compact exhaustion of Im f . By Lemma 3.12,

{
f−1 (Ki)

}
is a

compact exhaustion of Y . Hence, {Ki} is a desired f -efficient compact exhaustion of X.

Suppose, further, that f is injective. As f is a closed map (Lemma 4.2(i)), f is an embedding.
So, the restriction map f |−1 : Im f → Y is a homeomorphism and preserves connectedness,
boundedness, and unboundedness. Therefore,

{
f−1 (Ki)

}
is an efficient compact exhaustion

of Y . �

Corollary 4.6. Let (X, r) be a ray-based generalized continuum. That is, X is a generalized
continuum and r : [0,∞) ֌ X is a proper embedding. Then, there exists an r-efficient
compact exhaustion {Ki} of X.

Remarks 4.7.

(a) If X is a generalized continuum and r : [0,∞) ֌ X is a proper, injective map, then
f is an embedding by Lemma 4.2(i).

(b) All efficient compact exhaustions of [0,∞) were described in Remarks 2.1(a).

(c) While Lemma 4.4 on exhausting a closed pair (X,A) is used to prove Theorem 4.5
on exhausting a proper map, the latter applied to inclusion i : A →֒ X yields a nice
exhaustion of the closed pair (X,A).

5. Baserays

The previous sections showed that the theory of ends is robust for generalized continua.
However, the following example shows that class of spaces is too broad when a baseray is
required. Recall that a baseray is a proper embedding r : [0,∞) ֌ X.
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Example 5.1. Let X = [0, 1) × [0, 1] equipped with the dictionary order topology where
(x1, y1) < (x2, y2) means x1 < x2, or x1 = x2 and y1 < y2. We prove that X is a one-ended
generalized continuum that admits no proper map r : [0,∞) → X, is not locally path-
connected, does not have a countable basis, and is not metrizable. The dictionary order
on X is a linear order. Let x0 = (0, 0) ∈ X be the minimal element. The dictionary order
topology onX is defined by the basis consisting of all open intervals (a, b)X inX and all half-
open intervals [x0, b)X in X [Mun18, p. 84]. We use the notation (a, b)X , [a, b]X , [a, b)X , and

Figure 5.1. Three basic open sets for the dictionary order topology on
X = [0, 1)× [0, 1].

[a,∞)X = {x ∈ X | a ≤ x} to denote intervals in X to avoid confusion with intervals in R

and points in X. Figure 5.1 depicts three basic open sets in X. As X has an order topology,
X is Hausdorff. For each x ∈ I = [0, 1] ⊆ R, the function I → X defined by t 7→ (x, t) is an
embedding. The function X → I defined by (x, y) 7→ x is continuous. Using the last two
observations, X has the least upper bound property [Mun18, pp. 27 & 155]. Each closed
interval [a, b]X inX is compact [Mun18, Thm. 27.1]. The spaceX has the intermediate value
property—meaning if a < b in X, then there exists c ∈ X such that a < c < b. As X has
an order topology, the least upper bound property, and the intermediate value property, X
is, by definition, a linear continuum [Mun18, p. 153]. The linear continuum X is connected
as are all nonempty intervals in X [Mun18, Thm. 24.1]. As all nonempty basic open sets in
X are connected, X is locally connected. For each i ∈ Z+, define Ki = [0, 1− 1/i] × [0, 1]
which is the closed interval [x0, (1− 1/i, 1)]X . So, {Ki} is an efficient compact exhaustion of
X. For each i ∈ Z+, Vi = X −Ki is unbounded and connected. The space X is σ-compact,
locally compact, and a one-ended generalized continuum. Suppose, by way of contradiction,
that there exists a proper map r : [0,∞)→ X. As r is a proper map and [0,∞) is connected,
Im r contains the interval [r(0),∞)X . The interval [r(0),∞)X contains uncountably many
pairwise disjoint, nonempty open intervals ((x, 0), (x, 1))X = {x} × (0, 1). Taking inverse
images under r, [0,∞) ⊆ R contains uncountably many pairwise disjoint, nonempty open
sets, a contradiction. Therefore, X admits no proper map r : [0,∞) → X. A similar
argument shows that X is not locally path-connected—consider basic open neighborhoods
of p = (1/2, 0) in X. As X contains uncountably many pairwise disjoint, nonempty open
intervals, X does not have a countable basis (that is, X is not second countable). As X is
a generalized continuum, X is Lindelöf by Remarks 2.2(b). Each Lindelöf and metrizable
space has a countable basis [Mun18, p. 194]. Hence, X is not metrizable.

That example shows that some additional hypothesis on noncompact generalized continua
is required to ensure the existence of a baseray. Metrizability suffices as we now show.
Note that metrizable generalized continua include the four collections of spaces listed above
Remarks 2.2. Those manifolds, simplicial complexes, CW complexes, and ANRs are the
spaces that most interest us. In that sense, the metrizability hypothesis is not overly
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restrictive. Recall that an arc in a space is an embedding of the closed unit interval
I = [0, 1] ⊆ R.

Theorem 5.2 (Arcwise connectedness theorem). Let X be a connected, locally connected,
locally compact metric space. If a and b are distinct points of X, then there exists an arc
in X from a to b. If, furthermore, A is a connected, open subspace of X and a and b are
distinct points of A, then there exists an arc in A from a to b.

Proof. The first conclusion is proved in Schurle [Sch79, Thm. 4.2.5]. The second conclusion
follows from the first since A is necessarily a connected, locally connected, locally compact
metric space (for local compactness, see Munkres [Mun18, Cor. 29.3]). �

Remark 5.3. The arcwise connectedness theorem implies that if X is a metrizable gen-
eralized continuum and V is an open subspace of X, then the components and path-
components of V coincide. Indeed, the arcwise connectedness theorem implies that X
is locally path-connected. As V is open in X, V is locally path-connected. The result
follows by Munkres [Mun18, Thm. 25.5].

We pause to introduce some useful terminology. Let X be a generalized continuum and let
r : [0,∞) → X be a proper map (not necessarily an embedding). We say that r points

to ε ∈ E(X) provided the induced map E(r) : E([0,∞))→ E(X) on end spaces sends the
end ∞ of [0,∞) to the end ε. See the proof of Lemma 3.13 above for the definition of the
induced map on end spaces.

Theorem 5.4 (Existence of baseray). Let X be a noncompact, metrizable generalized con-
tinuum. Then, X has at least one end. Furthermore, if ε is any end of X, then there exists
a proper embedding r : [0,∞) ֌ X such that r points to ε.

Proof. By Theorem 2.9, X admits an efficient exhaustion by compacta {Ki}. For notational
convenience, in this proof we index by i ∈ Z≥0. For each i ∈ Z≥0, let Vi = X − Ki and

write
{
V j
i

}
= U (Vi) for the set of unbounded components of Vi. By Theorem 3.4(iii), X

has at least one end. Let ε =
(
V j0
0 , V j1

1 , . . .
)
∈ E (X; {Ki}) be an end of X. By definition,

we have V j0
0 ⊇ V

j1
1 ⊇ · · · . Recall that for each i ∈ Z≥0, V

ji
i is connected (hence, nonempty)

and open in X by Lemma 2.5(i).

Let p0 ∈ V
j0
0 . By compactness, p0 ∈ K

◦
m for some m > 0. Pass to a subsequence of {Ki}

while retaining K0 so that p0 ∈ K◦
1 . Let p1 ∈ V j1

1 . As p0 and p1 lie in the connected,

open subspace V j0
0 of X, the arcwise connectedness theorem yields an arc α0 : [0, 1]→ V j0

0
from p0 to p1. By compactness, Imα0 ⊆ K◦

m for some m > 1. Pass to a subsequence of

{Ki} while retaining K0 and K1 so that Imα0 ⊆ K◦
2 . Let p2 ∈ V

j2
2 . As p1 and p2 lie in

the connected, open subspace V j1
1 of X, the arcwise connectedness theorem yields an arc

α1 : [1, 2]→ V j1
1 from p1 to p2 as in Figure 5.2 (left).

The images of the arcs α0 and α1 meet at p1, though they may meet at other points. By
compactness, there is a first point of Imα0 that meets Imα1. Let that point be α0(a) = α1(b)
where 0 < a ≤ 1 and 1 ≤ b < 2. We trim and reparameterize the arcs α0 and α1 so that
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K 0

p 0

α 0 (a ) = α 1 (b )

K 1 K 2

p 1 p 2
α 0 α 1

p 0

α 0 (1 ) = α 1 (1 )

K 1 K 2

p 1 p 2
α 0

α 1

K 0

Figure 5.2. Arcs α0 and α1 (left) and trimmed and reparameterized arcs
α0 and α1 (right).

they concatenate to an arc [0, 2] → V j0
0 from p0 to p2. The resulting concatenated arc

may not pass through p1, but that is irrelevant. Trim the domain of α0 to be [0, a] and
reparameterize the result to have domain [0, 1]; let α0 denote the resulting arc. Trim the
domain of α1 to be [b, 2] and reparameterize the result to have domain [1, 2]; let α1 denote
the resulting arc. The images of α0 and α1 meet only at α0(1) = α1(1) as in Figure 5.2
(right). By the pasting lemma (Munkres [Mun18, Thm. 18.3]), α0 and α1 concatenate to

an arc. Note that Imα0 ⊆ V
j0
0 , Imα0 ⊆ K

◦
2 , and Imα1 ⊆ V

j1
1 .

By compactness, Imα1 ⊆ K
◦
m for somem > 2. Pass to a subsequence of {Ki} while retaining

K0, K1, and K2 so that Imα1 ⊆ K
◦
3 . Let p3 ∈ V

j3
3 . As p2 and p3 lie in the connected, open

subspace V j2
2 of X, the arcwise connectedness theorem yields an arc α2 : [2, 3]→ V j2

2 from
p2 to p3. As before, we trim and reparameterize α1 and α2—without altering α0—so that

α1 and α2 concatenate to an arc [1, 3] → V j1
1 from α1(1) to p3. Note that Imα1 ⊆ V j1

1 ,

Imα1 ⊆ K
◦
3 , and Imα2 ⊆ V

j2
2 .

Repeat that process inductively to obtain arcs αi : [i, i+ 1] → V ji
i that concatenate to an

injective map r : [0,∞) ֌ X. The map r is proper and points to ε since Imαi ⊆ V ji
i for

each i ≥ 0. By Remarks 4.7(a), r is an embedding as desired. �

In the proof of Theorem 5.4, no attempt was made to prevent the arc α0 from entering some

other component V k
1 before heading into V j1

1 to terminate at p1 as in Figure 5.3. Without

K 0

p 0

K 1
p 1 V1

j 1

V1
k

Figure 5.3. Arc α0 entering a component V k
1 before heading into V j1

1 to
terminate at p1.

some additional hypothesis on X, it is not even possible to prevent that as shown by the
following example.

Example 5.5. Let X ⊆ R
3 be the metrizable generalized continuum shown in Figure 5.4.

We define X to be the union of the following three subsets of R3. First, A is the blue
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x

y
z

x

y

x

y

z

Figure 5.4. Three views of a metrizable generalized continuum X in R
3

with positive coordinate axes indicated. The origin of R3 is the initial point
of the green ray.

rectangle minus the red corner point as in Figure 5.4. That is,

A = {(x, y, x) | 0 ≤ x ≤ 1 & − 1 ≤ y ≤ 1} − {(1,−1, 1)}

Second, B is the orange surface above a portion of the topologist’s sine curve and below A.
That is,

B = {(x, sin(1/x), z) | 0 < x ≤ 1 & 0 ≤ z ≤ x}

Third, C is the green ray equal to the nonnegative z-axis. We define X = A∪B ∪C, which
is a metric subspace of R3. The reader may verify that X is a generalized continuum with
two ends (one where the red point was removed and one pointed to by the green ray). Let
K be the intersection of X with the plane z = 0, which is indicated in purple in Figure 5.4.
That is, K is the union of the line segment {(0, y, 0) | −1 ≤ y ≤ 1} and the portion of
the topologist’s sine curve {(x, sin(1/x), 0) | 0 < x ≤ 1}. So, K is compact, connected, and
efficient, but not path connected. Let p = (1, sin(1), 0) ∈ K which is the purple point
indicated in Figure 5.4. The complement of K in X has two unbounded components V 1

and V 2, where V 1 is the positive z-axis. Notice that every path in X from p to any point
in V 1 must pass through V 2.

Just as it is useful to retract a based space to its basepoint, it is useful to properly retract a
ray-based space to its baseray. Before proving such retracts exist, we make an observation
on frontiers.

Lemma 5.6. Let X be a generalized continuum and let A ⊆ X be a closed subspace. Let
K ⊆ X be a compactum and define L = A∩K as in Figure 5.5. Then, the frontier of L in
A is contained in the frontier of K in X. That is, FrAL ⊆ FrXK.

Proof. The hypotheses imply that L is compact. Thus, FrAL = L − IntAL and FrXK =
K − IntXK. Let p ∈ FrAL, so p ∈ L and p /∈ IntAL. As L ⊆ K, we have p ∈ K. Suppose,
by way of contradiction, that p ∈ IntXK. Then, there exists a neighborhood U of p that is
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X
A

K

L

Figure 5.5. Closed subspace A of X, compactum K in X, and intersection
L of A and K.

open in X and contained in K. Hence, p ∈ A ∩ U ⊆ A ∩K = L where A ∩ U is open in A.
That implies p ∈ IntAL, a contradiction completing the proof. �

Remark 5.7. In the setup of Lemma 5.6, IntAL need not be contained in IntXK. Consider

A

K

L

ℝ 

2

Figure 5.6. The x-axis A in R
2, compactum K equal to a disk union a

segment, and intersection L of A and K.

the example in Figure 5.6 where X = R
2, A is the x-axis, and K is a closed disk union the

indicated line segment.

We use Lemma 5.6 in the following key setup. Let (X, r) be a ray-based generalized con-
tinuum, and let {Ki} be an r-efficient compact exhaustion of X. For each i ∈ Z+, define
Li = Im r ∩ Ki. So, we have efficient compact exhaustions {Li} of Im r and

{
r−1 (Ki)

}

of [0,∞). By definition, each efficient compactum is connected and, hence, nonempty. In
particular, r(0) ∈ K1. If necessary, then replace {Ki} with the subsequence obtained by
deleting the first term so that r(0) ∈ K◦

1 . Recalling Examples 2.1(a), there exists an un-
bounded sequence of real numbers 0 < b1 < b2 < b3 < · · · such that r−1 (Ki) = [0, bi] for
each i ∈ Z+ (b1 > 0 since we arranged that r(0) ∈ K◦

1 ). So, Li is the arc r ([0, bi]) with end-

X

K i Im r

L ir (0 )
r (b i )

Figure 5.7. Efficient compactum Ki ⊆ X meeting the ray Im r in the arc
Li = r ([0, bi]).

points r(0) and r (bi) as depicted in Figure 5.7. As FrIm rLi = {r (bi)}, Lemma 5.6 implies
that r (bi) ∈ FrXKi. For each i ∈ Z+, define ai = inf r−1 (FrXKi). AsKi = FrXKi⊔IntXKi,
we see that ai ≤ bi (both ai = bi and ai < bi occur in simple examples). As 0 ∈ r−1 (K◦

1 ),
we have 0 < a1. As r

−1 (Ki) = [0, bi] and Ki ⊆ IntXKi+1 is disjoint from FrXKi+1, we see
that r−1 (FrXKi+1) is a nonempty, compact subset of the interval (bi,∞). Hence, bi < ai+1.
Thus, 0 < a1 ≤ b1 < a2 ≤ b2 < · · · and r

−1 (FrXKi) ⊆ [ai, bi] for each i ∈ Z+.
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Theorem 5.8 (Existence of retract to baseray). Let (X, r) be a ray-based generalized con-
tinuum. That is, X is a generalized continuum and r : [0,∞) ֌ X is a proper embedding.
Then, there exists a proper map ρ : X → [0,∞) such that ρ ◦ r = id : [0,∞) → [0,∞). In
particular, r ◦ ρ : X → Im r is a proper retraction of X onto the baseray.

Proof. By Corollary 4.6, there exists an r-efficient compact exhaustion {Ki} of X. We
assume the setup and notation from the paragraph preceding Theorem 5.8.

We will repeatedly apply the pasting lemma and the Tietze extension theorem for continuous
functions defined on closed subspaces (see Munkres [Mun18, Thms. 18.3 & 35.1(a)]). The
Tietze extension theorem applies since, as X is a generalized continuum, X is normal by
Remarks 2.2(b). Note that each closed subspace of a normal space is normal. And, for each
i ∈ Z+, we have Ki ⊆ IntXKi+1 and Ki = FrXKi ⊔ IntXKi.

First, we define a map ρ1 : K1 → [0, b1]. Define the restriction homeomorphism f1 =

r|−1 : r ([0, b1]) → [0, b1]. Define the restriction map g1 = f1| : r ([0, b1]) ∩ FrXK1 →
[a1, b1]. Tietze extend g1 to a map h1 : FrXK1 → [a1, b1]. Paste f1 and h1 to the map
k1 : r ([0, b1]) ∪ FrXK1 → [0, b1]. Tietze extend k1 to a map ρ1 : K1 → [0, b1].

Second, we extend ρ1 to a map ρ2 : K2 → [0, b2]. Define the restriction homeomorphism

f2 = r|−1 : r ([b1, b2])→ [b1, b2]. Define the restriction map g2 = f2| : r ([b1, b2])∩FrXK2 →
[a2, b2]. Tietze extend g2 to a map h2 : FrXK2 → [a2, b2]. Paste h1, f2, and h2 to the map
k2 : FrXK1 ∪ r ([b1, b2]) ∪ FrXK2 → [a1, b2]. Tietze extend k2 to a map l2 : K2 − IntXK1 →
[a1, b2]. Paste ρ1 and l2 to the map ρ2 : K2 → [0, b2].

Repeat that second step inductively to obtain ρi : Ki → [0, bi] for each i ≥ 3. Define
ρ : X → [0,∞) to equal ρi on Ki. By construction, ρ is continuous and restricts to
r−1 on the ray Im r. The latter implies that ρ ◦ r = id : [0,∞) → [0,∞). Also by
construction, the following hold for each i ∈ Z+: ρ (Ki) = [0, bi], ρ (FrXKi) ⊆ [ai, bi], and
ρ (Ki+1 − IntXKi) ⊆ [ai, bi+1]. The latter implies that ρ (X −Ki) ⊆ [ai,∞) for each i ∈ Z+

(since {Ki} exhausts X and {ai} is increasing). In particular, ρ−1 ([0, ai]) ⊆ Ki+1 for each
i ∈ Z+. That implies ρ is proper as follows. Let K ⊆ [0,∞) be compact. As ρ is continuous,
ρ−1 (K) is closed in X. As K ⊆ [0,∞) is compact and {ai} is increasing and unbounded,
there exists i ∈ Z+ such that K ⊆ [0, ai]. So, ρ−1 (K) ⊆ Ki+1. As ρ−1 (K) is closed in X
and contained in the compactum Ki+1, we see that ρ−1 (K) is compact, as desired.

Lastly, r ◦ ρ : X → Im r is a composition of proper maps and, hence, is a proper map. We
must show that r ◦ ρ equals the identity on Im r. Let r(a) ∈ Im r. Then, r ◦ ρ (r(a)) =
r (ρ ◦ r(a)) = r(a) since ρ ◦ r = id : [0,∞)→ [0,∞). Therefore, r ◦ ρ : X → Im r is a proper
retraction of X onto the baseray. �

We close this section with observations on Alexandroff’s and Freudenthal’s compactifications
of metrizable generalized continua. Given a generalized continuum X, we let A(X) =
X⊔{∞} denote Alexandroff’s one-point compactification ofX (see Dugundji [Dug66, p. 246]
or Munkres [Mun18, Thm. 29.1]). Recall that A(X) is equipped with the topology consisting
of sets that are open in X or have the form A(X)−K for some compactum K ⊆ X.

Lemma 5.9. Let X be a generalized continuum, and let {Ki} be an efficient compact
exhaustion of X. Then, A(X)−Ki for i ∈ Z+ is a connected, countable neighborhood basis
of ∞ in A(X). In particular, A(X) is connected if and only if X is noncompact.
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Proof. First, suppose X is compact. Then, efficiency implies that Ki = X for each i ∈ Z+.
In particular, {∞} is open in A(X) and A(X) is homeomorphic to the topological disjoint
union of X and the isolated point ∞.

Next, suppose X is noncompact. For each i ∈ Z+, let Vi = X − Ki with (unbounded)

components V 1
i , . . . , V

ji
i . We claim that ∞ ∈ ClA(X)V

j
i for each V j

i . Consider A(X) −K

a neighborhood of ∞ in A(X) where K ⊆ X is compact. As V j
i is unbounded, V j

i is

not contained in K. Thus, V j
i meets X − Ki and meets A(X) − Ki. That proves the

claim. As V j
i is connected and∞ ∈ ClA(X)V

j
i , it follows that V

j
i ⊔{∞} is connected. Thus,

∪jij=1V
j
i ⊔{∞} is connected. As Ki is efficient, Vi has no bounded component and that union

equals A(X) − Ki. So, each A(X) − Ki is connected. Let A(X) − K be a neighborhood
of ∞ in A(X) where K ⊆ X is compact. There exists i ∈ Z+ such that K ⊆ Ki. Hence,
A(X)−Ki ⊆ A(X)−K, as desired. �

Lemma 5.10. If X is a metrizable generalized continuum, then X has a countable dense
set and a countable basis.

Proof. As X is a generalized continuum, X is Lindelöf by Remarks 2.2(b). As X is a metric
space, the following are equivalent: X is Lindelöf, X has a countable dense set, and X has
a countable basis—see Dugundji [Dug66, p. 187] or Engelking [Eng89, p. 256]. �

Lemma 5.11. If X is a generalized continuum with a countable basis, then both A(X) and
F (X) have a countable basis.

Proof. By Theorem 2.9, X has an efficient compact exhaustion {Ki} where i ∈ Z+. For
A(X), use the countable basis of X together with the countable neighborhood basis of ∞
from Lemma 5.9 given by A(X) −Ki where i ∈ Z+. For F (X), use the countable basis of
X together with the countable collection of all basic open sets FV l

k defined in (3.4). �

Lemma 5.12. If X is a metrizable generalized continuum, then both A(X) and F (X) are
metrizable.

Proof. By Lemma 5.10, X has a countable basis. By Lemma 5.11, both A(X) and F (X)
have a countable basis. As both A(X) and F (X) are compact and Hausdorff, A(X) and
F (X) are regular (see also Munkres [Mun18, Thm. 32.3]). By Urysohn’s metrization theo-
rem (see Munkres [Mun18, p. 215]), A(X) and F (X) are metrizable. �

Theorem 5.13. Let X be a metrizable generalized continuum. Then, F (X) is a compact,
metrizable generalized continuum. If further X is noncompact, then A(X) is a compact,
metrizable generalized continuum.

Proof. By Theorem 3.8, F (X) is a compact generalized continuum. By Lemma 5.12, F (X)
is metrizable. Whether or not X is noncompact, A(X) is compact (hence σ-compact and
locally compact), Hausdorff, locally connected, and metrizable (by Lemma 5.12). For local
connectedness of A(X), use local connectedness of X and Lemma 5.9 (see also de Groot and
McDowell [dGMc67, Thm. 4.1]). Finally, A(X) is connected if and only if X is noncompact
by Lemma 5.9. �
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Remark 5.14. We may now give a slick proof of the existence of a baseray in any non-
compact, metrizable generalized continuum X: apply the arcwise connectedness theorem
to obtain an arc in A(X) from p ∈ X to ∞, and then delete the endpoint ∞ to obtain a
baseray. While that proof is conceptually simple, it does not allow one to ensure that the
resulting baseray points to a specified end of X as was obtained in Theorem 5.4. One may
apply the same argument using F (X) in place of A(X). Doing so, one may ensure that
the resulting baseray points to a specified isolated end of X. Recall that an end ε of X is
isolated provided ε is an isolated point of E(X).

Remark 5.15. We believe that the main results of this section—existence of a baseray and
a proper retract to each baseray—extend to trees. See Section 9 for more precise statements.

6. Reduced cohomology

In this section, we compare three standard definitions of reduced cohomology. For clarity,
we use integer coefficients. Let X be a nonempty space with finitely many path-components
X1, . . . , Xn. Let {•} denote a one-point space. For the first definition, consider the aug-
mented singular chain complex of X. Apply the Hom (−,Z) functor to that complex to

obtain the dual augmented cochain complex of X. Define reduced cohomology H̃∗ (X)
of X to be kernel mod image of that dual complex. Equivalently, there is a unique map
q : X → {•}. That map induces a ring homomorphism q∗ : H∗ (•) → H∗ (X) and a short
exact sequence

(6.1) 0← Coker q∗ ← H∗ (X)
q∗

←− H∗ (•)← 0

Reduced cohomology ofX is the cokernel of q∗. For the second definition, choose a basepoint
• ∈ X. Equivalently, choose a map i : {•} → X. Define reduced cohomology of X to be

the relative cohomology of the pair (X, •), namely H̃∗ (X) = H∗ (X, •). Equivalently, the
map i : {•} → X induces a ring homomorphism i∗ : H∗ (X) → H∗ (•) and a short exact
sequence

(6.2) 0← H∗ (•)
i∗
←− H∗ (X)← H∗ (X, •)← 0

Reduced cohomology of X is the kernel of i∗, which is an ideal of H∗ (X).

For any map i : {•} → X, the composition {•}
i
−→ X

q
−→ {•} is the identity and both

sequences (6.1) and (6.2) split. So, both approaches yield splittings

(6.3) H∗ (X) ∼= H̃∗ (X)⊕H∗ (•)

and isomorphic Z-modules H̃k (X) for each dimension k. Recall that H0 (X) is canonically
isomorphic to the free abelian group 〈X1, . . . , Xn〉 ∼= Z

n with basis the set {X1, . . . , Xn} of
path-components of X. By the universal coefficient theorem, H0 (X) ∼= Hom (H0 (X) ,Z)
is canonically isomorphic to the free abelian group 〈δX1, . . . , δXn〉 ∼= Z

n where δXi denotes
the dual generator of Xi that sends Xi 7→ 1 and Xj 7→ 0 for all j 6= i. Thus, q∗ :
H∗ (•) → H∗ (X) is the function H0 (•) → H0 (X) sending δ• 7→ δX1 + · · · + δXn. Using
the canonical isomorphisms, q∗ is the diagonal function Z ∼= H0 (•) → H0 (X) ∼= Z

n given
by 1 7→ (1, . . . , 1). So, Im q∗ = ∆ ∼= Z is the diagonal subgroup of H0 (X) generated by

the element δX1 + · · · + δXn. Therefore, the first definition gives H̃0 (X) ∼= H0 (X) /∆,
where ∆ is an ideal of H∗ (X) if and only if X is acyclic. And, the second definition gives

H̃0 (X) = 〈δX1, . . . , δXk−1, δXk+1, . . . , δXn〉 where the basepoint • lies in Xk.
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If X is path-connected, then the two definitions yield canonically isomorphic, graded, asso-

ciative Z-algebras H̃∗ (X) with H̃0 (X) = {0}. Those algebras are unital precisely when X

is acyclic and H̃∗ (X) = {0} is the zero ring. The fact that the two definitions agree when
X is path-connected may be the reason the standard literature does not emphasize that
they differ, as we now explain.

Suppose X has more than one path-component. Then, the first definition yields the se-

quence (6.1) which does not split naturally in X and multiplication in H̃0 (X) is not
well-defined. For a simple example, consider the zero-sphere S0 = {±1}. Notice that

H̃∗
(
S0

)
= H̃0

(
S0

)
∼= Z

2/∆ where the diagonal subgroup ∆ is not an ideal of Z
2 and

coordinatewise multiplication is not well-defined on Z
2/∆. The sequence (6.1) becomes

(6.4) 0 Z
2/∆ Z

2
Z 0

s

q∗

where q∗ is the diagonal function. Each splitting of (6.4) is given by a matrix s =
[
a 1− a

]

for some a ∈ Z. The only splitting compatible with the map f : {•} → S0 defined by
f(•) = 1 is

[
1 0

]
. The only splitting compatible with the map g : {•} → S0 defined

by g(•) = −1 is
[
0 1

]
. So, no splitting of (6.4) is natural. On the other hand, the

sequence (6.2) always splits naturally in X for based maps, and all relative cup products
are well-defined—see Hatcher [Hat02, pp. 199–214] and May [May99CC, pp. 143–148]. The
unique natural splitting of (6.2) is given by q∗ : H∗ (•) → H∗ (X)—uniqueness follows by
considering naturality for the retraction map q : X → {•}.

For the homotopical approach, let [X,Y ] denote the set of based homotopy classes of based

maps from X to Y . For each integer n ≥ 0, define H̃n (X) = [X,K(Z, n)] where K(Z, n)
is an Eilenberg-Mac Lane space—see May [May99CC, Ch. 22]. Recall that K(Z, n) is
connected for each n > 0 and that Z is a K(Z, 0). So,

H̃0 (X) = [X,Z] ∼= 〈δX1, . . . , δXk−1, δXk+1, . . . , δXn〉

where the basepoint • lies in Xk. Thus, the homotopical approach and the approach using
a basepoint yield isomorphic results.

To summarize, defining reduced cohomology via augmentation has the apparent advantage
of avoiding a choice of basepoint, but then (6.3) does not split naturally and cup products
involving dimension-zero classes are generally not defined. The alternative definition re-
quires an initial choice of basepoint. In return, the resulting graded, associative Z-algebra
has all cup products well-defined and (6.3) splits naturally. For those reasons, the latter
approach is preferred6 and is the one we will use.

7. End cohomology

In this section, we review the definition of end cohomology and its basic properties. Then,
we introduce our definition of reduced end cohomology and prove a splitting result. Finally,

6Axioms for a reduced homology theory of based spaces first appeared in Dold and Thom [DT58] who
attribute them to Puppe. For a sampling of textbooks that use the augmentation approach, see Eilenberg
and Steenrod [ES52, pp. 18–19 & 190–191], Spanier [Spa66, pp. 168 & 237], Dold [Dol80, pp. 33–34],
Massey [Mas78, pp. 40–43], and Bredon [Bre93, pp. 172–185]. Textbooks that use the based approach or
mention both approaches include May [May99CC, pp. 97, 105–109, & 143–148], Hatcher [Hat02, pp. 110–126,
160–161, & 199–214], and tom Dieck [tD08, pp. 252 & 407].
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we study dimension-zero end cohomology in greater detail. Along the way, we give several
illustrative examples. Throughout this section the coefficient ring R is an arbitrary PID,
except where integer coefficients are explicitly indicated.

We adopt the direct limit approach to end cohomology7. Let X be a generalized continuum.
By Theorem 2.9, X may be exhausted by compacta. Define the poset (K,≤) where K is
the set of compacta in X, and K ≤ K ′ means K ⊆ K ′. We have a direct system of
graded R-algebras H∗ (X −K) where K ∈ K and the morphisms are inclusion induced
restrictions. Define H∗

e (X), the end cohomology R-algebra of X, to be the direct limit
of that direct system. For the relative version, let (X,A) be a closed pair, namely a
generalized continuum X together with a closed subspace A ⊆ X. Closed pairs are required
to ensure properness of induced maps. Regard X as the closed pair (X, ∅). Consider the
direct system H∗ (X −K,A−K) where K ∈ K and the morphisms are inclusion induced
restrictions. Define H∗

e (X,A), the end cohomology R-algebra of (X,A), to be the direct
limit of that direct system.

We employ a standard explicit model of the direct limit—see [ES52, p. 222] or
[Mas78, p. 384]—where an element of H∗

e (X,A) is represented by an element of
H∗ (X −K,A−K) for some compactum K ⊆ X. Two representatives α ∈
H∗ (X −K,A−K) and α′ ∈ H∗ (X −K ′, A−K ′) are equivalent provided they have the
same restriction in some H∗ (X −K ′′, A−K ′′), where K,K ′ ⊆ K ′′ are compacta in X.

Let {Ki} be an exhaustion of X by compacta. As {Ki} is cofinal in K, we may compute
H∗

e (X,A) using the direct system indexed by Z+. Namely, there is a canonical isomorphism
(see [ES52, p. 224])

(7.1) H∗
e (X,A)

∼= lim
−→

H∗ (X −Ki, A−Ki)

Note that we may delete instead the topological interior K◦
i of Ki to obtain the canonical

isomorphism (see [CGH20, p. 467])

(7.2) H∗
e (X,A)

∼= lim
−→

H∗ (X −K◦
i , A−K

◦
i )

Let (Y,B) be another closed pair. Let f : (Y,B)→ (X,A) be a proper map of closed pairs,
meaning f : Y → X is a proper map and f(B) ⊆ A. It follows that f | : B → A is proper and
f induces an R-algebra morphism f∗e : H∗

e (X,A)→ H∗
e (Y,B). If id : (X,A)→ (X,A), then

id∗e = id. If g : (Z,C)→ (Y,B) is another proper map of closed pairs, then (f ◦g)∗e = g∗e ◦f
∗
e .

So, end cohomology is a contravariant functor from the category of proper maps of closed
pairs to the category of R-algebras.

Let (X,A) and (Y,B) be closed pairs. Let f and g be proper homotopy equivalent proper
maps (Y,B) → (X,A). Then, f∗e = g∗e . It follows that if (X,A) and (Y,B) are proper
homotopy equivalent, then H∗

e (X,A) and H∗
e (Y,B) are isomorphic. So, the isomorphism

type of the end cohomology R-algebra of (X,A) is an invariant of the proper homotopy
type of (X,A).

End cohomology has a long exact sequence for each closed pair and closed triple, satisfies
excision for each excisive triad, and satisfies a Mayer-Vietoris theorem—see [CGH20, § 2.3]

7For background on direct systems and direct limits, see Eilenberg and Steenrod [ES52, Ch. VIII] and
Massey [Mas78, A.1 & A.2]. In particular, the direct limit of a direct system is the universal repelling object
in the sense that any compatible collection of homomorphisms from the direct system to an object yields a
unique homomorphism from the direct limit to that object.
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for details on those facts and others stated above. Those long exact sequences are natural8.
The end cohomology algebra of each topological disjoint union of finitely many closed pairs
is canonically isomorphic to the product of the end cohomology algebras of the closed pairs.

As we discussed in Section 6, reduced cohomology of a space X is defined to be the relative
cohomology of the based space (X, •) for some choice of basepoint • ∈ X. Analogously, we
define reduced end cohomology as follows. Let (X, r) be a ray-based generalized continuum.
Recall that a baseray is a proper embedding r : [0,∞) ֌ X. If X is a noncompact,
metrizable generalized continuum, then Theorem 5.4 ensures the existence of a baseray r
in X. We define the reduced end cohomology R-algebra of (X, r) to be

(7.3) H̃∗
e (X) = H∗

e (X, r)

For each integer k, we define the k-dimensional reduced end cohomology R-module of
(X, r) to be

H̃k
e (X) = Hk

e (X, r)

When the baseray is clear from context, we write H̃∗
e (X). Otherwise, we write H∗

e (X, r).
Given another ray-based generalized continuum (Y, s) and a proper map f : Y → X, we
say that f is ray-based provided r = f ◦ s.

Example 7.1. Let X be a compact generalized continuum. Define S(X) = [0,∞)×X
to be the stringer based on X. Notice that S(X) is a one-ended generalized continuum
with efficient compact exhaustion [0, i]×X, for i ∈ Z+, by Lemmas 3.19, 3.20, and 3.21. If
X is based at p ∈ X, then the stringer S(X) is equipped with the baseray r = [0,∞)×{p}
as depicted in Figure 7.1.

X

p r = [0, ∞)×{p}

S (X ) = [0, ∞) × X

Figure 7.1. Based space X and ray-based stringer S(X) = [0,∞)×X.

There are canonical isomorphisms

H∗
e (S(X)) ∼= H∗ (X)

H̃∗
e (S(X)) = H∗

e (S(X), r) ∼= H∗ (X, p) = H̃∗ (X)

8For naturality, let f : (Y,B) → (X,A) be a proper map of closed pairs. Consider the biinfinite commu-
tative diagram for (X,A) in [CGH20, p. 469] and the analogous diagram for (Y,B) (see [CGH20, p. 468]).
Stack the former directly atop the latter. Restrictions of f induce vertical homomorphisms straight down
from the former to the latter. Altogether, the entire diagram commutes. The direct limit of that diagram
yields the desired commutative diagram with two rows—the long exact end cohomology sequences for (X,A)
and (Y,B) respectively—and induced homomorphisms from the (X,A) sequence to the (Y,B) sequence.
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In particular, for a ray we have

H∗
e ([0,∞)) = H0

e ([0,∞)) ∼= H0 ({0}) ∼= R

H̃∗
e ([0,∞)) = {0}

If f : (Y, q) → (X, p) is a based map of compact generalized continua, then we define
S(f) : S(Y ) → S(X) by (t, y) 7→ (t, f(y)). It is straightforward to verify that S(f) is a
proper, ray-based map. And, S is a covariant functor from the category of based, compact
generalized continua and based maps to the category of ray-based, one-ended generalized
continua and proper, ray-based maps.

Remarks 7.2.

(a) Reduced end cohomology is a proper homotopy invariant for ray-based, proper maps.

(b) Reduced end cohomology generally depends on ray choice. Let S2 denote the 2-
sphere and T 2 denote the 2-torus. Consider the topological disjoint union X =
S(S2) ⊔ S(T 2). Let r = [0,∞) × {p} ⊆ S(S2) and s = [0,∞) × {q} ⊆ S(T 2) be
straight rays. The nonzero R-modules in the end cohomology algebra of X are

H2
e (X) ∼= R×R

H1
e (X) ∼= 0 ×R2

H0
e (X) ∼= R×R

where the cup product is coordinatewise in the direct product. Therefore, we have

k Hk
e (X, r) Hk

e (X, s)
2 R×R R×R
1 0×R2 0×R2

0 0×R R× 0

For each integer k, the R-modules Hk
e (X, r) and Hk

e (X, s) are isomorphic. Nev-
ertheless, the R-algebras H∗

e (X, r) and H
∗
e (X, s) are not isomorphic. To see that,

note that (1, 0) ∈ H0
e (X, s) annihilates all of H

1
e (X, s), whereas H

0
e (X, r) does not

contain a nonzero element that annihilates all of H1
e (X, r).

(c) For a connected example where ray choice alters the isomorphism type of the reduced
end cohomology R-algebra, begin with X from the previous example. Attach a
compact, oriented 1-handle to the boundary sphere of X, and then glue together by
a homeomorphism the resulting two boundary tori. That yields Y , a connected, two-
ended 3-manifold without boundary. We have H∗

e (Y, r)
∼= H∗

e (X, r) and H
∗
e (Y, s)

∼=
H∗

e (X, s). Hence, the isomorphism type of the reduced end cohomology R-algebra
of Y depends on ray choice.

(d) For more intricate computations of end cohomology algebras, see [CH14, CGH20].

Next, we prove a splitting result for reduced end cohomology analogous to that for ordinary
cohomology in (6.3).
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Theorem 7.3. Let (X, r) be a ray-based, metrizable generalized continuum. There is a
splitting

(7.4) H∗
e (X) ∼= H̃∗

e (X)⊕H∗
e ([0,∞))

that is natural in (X, r) for ray-based proper maps. In each positive dimension k, Hk
e (X) ∼=

H̃k
e (X).

Proof. By definition, r : [0,∞) ֌ X is a proper, injective map. By Theorem 5.8, there
exists a proper map ρ : X ։ [0,∞) such that ρ◦r = id : [0,∞)→ [0,∞). Thus, r∗e ◦ρ

∗
e = id,

ρ∗e is injective, and r∗e is surjective. Consider the long exact end cohomology sequence for
the closed pair (X, r). As H∗

e ([0,∞)) = H0
e ([0,∞)) ∼= R and r∗e is surjective, we get

Hk
e (X) ∼= H̃k

e (X) for each k ∈ Z+. We also get the short exact sequence

(7.5) 0 H0
e (r) H0

e (X) H̃0
e (X) 0

ρ∗e

r∗e

with splitting homomorphism ρ∗e . Thus, H0
e (X) ∼= H̃0

e (X) ⊕H0
e (r) which proves (7.4). It

remains to prove naturality, which we address after the next two lemmas. �

Motivated by the fact—from the homotopical approach to ordinary cohomology discussed

in Section 6—that H̃n (X) ∼= [X,K(R,n)], we give in the next lemma a natural description
of dimension-zero end cohomology. Equip the ring R with the discrete topology. If X is a
space, then let C(X,R) denote the R-algebra of maps X → R. Let 1X : X → R denote
the constant map with image 1 ∈ R. In case X = {•} is a one-point space—such as the
end space of a ray—we write 1• in place of 1X and note that 1• is a canonical generator
of C(•, R) ∼= R. If G = 〈g1, . . . , gn〉 is a free Z-module with basis {g1, . . . , gn}, then let
δgi denote the dual generator of the free R-module Hom (G,R) ∼= 〈δg1, . . . , δgn〉 defined by
gi 7→ 1 and gj 7→ 0 for all j 6= i.

Lemma 7.4. Let X be a metrizable generalized continuum. Then, there is an isomorphism
η : H0

e (X)→ C(E(X), R).

Proof. By Theorem 2.9, X admits an efficient exhaustion by compacta {Ki}. For each

i ∈ Z+, let Vi = X − Ki and write
{
V j
i

}
= U (Vi) for the finite (see Lemma 2.7) set of

unbounded components of Vi. As X is metrizable, Remark 5.3 implies that the components

and the path-components of Vi coincide. So, H0 (Vi) =
〈
V j
i

〉
is the free Z-module with

basis
{
V j
i

}
. By the universal coefficient theorem, H0 (Vi) =

〈
δV j

i

〉
is the free R-module

with basis
{
δV j

i

}
. Consider the direct system H0 (Vi) with direct limit H0

e (X), and re-

call the basis EV l
k for the topology on E(X)—see (3.3). For each i ∈ Z+, we define the

homomorphism ηi : H0 (Vi) → C(E(X), R) on the canonical basis
{
δV j

i

}
. Namely, for

each j define ηi

(
δV j

i

)
: E(X) → R to be the map that sends each end ε ∈ EV j

i of X

to 1 and sends all other ends of X to 0. Notice that ηi

(
δV j

i

)
is continuous since R is

discrete, the inverse image of 1 is the basic open set EV j
i , and the inverse image of 0 is the

union of the basic open sets EV k
i where k 6= j. The direct system H0 (Vi) together with
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the homomorphisms ηi : H
0 (Vi)→ C(E(X), R) form a commutative diagram—to see that,

use Lemmas 2.8 (monotonicity) and 3.1. The universal property of direct limits yields a
unique homomorphism η : H0

e (X)→ C(E(X), R) such that the whole diagram commutes.

For each unbounded component V j
i of Vi, Lemma 3.1 ensures the existence of an end of

X in the basic open set EV j
i . That implies each ηi is injective. Hence, η is injective. For

surjectivity of η, let ψ : E(X)→ R be continuous. Recall that, by Theorem 3.7, the space of
ends E(X) is compact. As R is discrete and ψ : E(X)→ R is continuous, Imψ is compact
and finite. Taking the preimages of the points in Imψ, we get a covering of E(X) by finitely
many disjoint open sets U1, . . . , Un and ψ is constant on each Uk. Say ψ(Uk) = rk ∈ R
for each k. Each Uk is a union of basic open sets in E(X). As E(X) is compact, finitely

many EV j1
i1
, . . . , EV jm

im
of those basic open sets cover E(X). Let i = max {i1, . . . , im}. By

Lemma 3.6, Ki ⊆ X is a compactum such that, for each j, the basic open set EV j
i lies com-

pletely within a unique Uk, where k = k(j) depends on j. Define z =
∑

j rk(j)δV
j
i ∈ H

0 (Vi).

Let ζ ∈ H0
e (X) be the element represented by z. By our definition of z, ηi(z) = ψ. By

commutativity, η (ζ) = ψ and η is surjective. Hence, η is an isomorphism.

The argument above adapts readily to the case where {Ki} is a (not necessarily efficient)
compact exhaustion ofX. That case is necessary when we consider a proper map f : Y → X
since the inverse image of an efficient compact exhaustion of X need not be an efficient
compact exhaustion of Y by Example 4.1. To adapt the argument, let {Ki} be a compact

exhaustion of X and, for each i ∈ Z+, let Vi = X −Ki. We have
{
V j
i

}
= U (Vi) the finite

set of unbounded components of Vi (see Lemma 2.7),
{
Bk

i

}
= B (Vi) the (possibly infinite)

set of bounded components of Vi, and Vi = U (Vi)⊔B (Vi). So, H0 (Vi) =
〈
V j
i

〉
⊕
〈
Bk

i

〉
is a

free Z-module and

H0 (Vi) ∼= Hom (H0 (Vi) , R) ∼= Hom
(〈
V j
i

〉
, R

)
⊕Hom

(〈
Bk

i

〉
, R

)

In the direct system H0 (Vi), the homomorphisms are restrictions induced by inclusions, and
compactness implies that each δBk

i ∈ H
0 (Vi) is eventually sent to 0. Thus, we define ηi :

H0 (Vi)→ C(E(X), R) as above on each δV j
i and to send each δBk

i to 0. The direct system
H0 (Vi) together with the homomorphisms ηi : H

0 (Vi)→ C(E(X), R) form a commutative
diagram that induces a unique homomorphism η : H0

e (X) → C(E(X), R) such that the
whole diagram commutes. Arguments similar to those above imply η is an isomorphism. �

Lemma 7.5. Let f : Y → X be a proper map of metrizable generalized continua, then f
induces the R-algebra morphism f∗ : C(E(X), R) → C(E(Y ), R) given by ψ 7→ ψ ◦ E(f).
In particular, f∗

(
1E(X)

)
= 1E(Y ).

Proof. By Theorem 2.9, X admits an efficient exhaustion by compacta {Ki}. By
Lemma 3.12,

{
Li = f−1 {Ki}

}
is a (not necessarily efficient) compact exhaustion of Y .

Write Vi = X−Ki,
{
V j
i

}
= U (Vi), Ui = Y −Li, and

{
U j
i

}
= U (Ui). Consider the following

commutative diagram where f∗ : C(E(X), R)→ C(E(Y ), R) is defined by f∗ = η ◦ f∗e ◦ η
−1

By a common abuse of notation, η is used twice to mean different isomorphisms, one for X
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and one for Y .

(7.6)

H0
e (Y ) H0 (Ui) H0 (Vi) H0

e (X)

C(E(Y ), R) C(E(X), R)

η

∼=
ηi

f∗

ηi

f∗

e

η

∼=
f∗

It remains to show that f∗ : C(E(X), R) → C(E(Y ), R) is given by ψ 7→ ψ ◦ E(f). Let

i ∈ Z+. It suffices to consider the case where δV j
i is an element of the canonical basis of

H0 (Vi) and ψ = ηi

(
δV j

i

)
. Let Um

i , m ∈Mj , denote the (finite, possibly empty) collection

of unbounded components of Ui that f maps into V j
i . So, f∗ : H0 (Vi) → H0 (Ui) sends

δV j
i 7→

∑
m∈Mj

δUm
i . By commutativity of (7.6), f∗ : C(E(X), R) → C(E(Y ), R) sends

ηi

(
δV j

i

)
7→

∑
m∈Mj

ηi (δU
m
i ). By the definition of ηi, ηi

(
δV j

i

)
sends each end of X in EV j

i

to 1 and sends all other ends of X to 0. Similarly,
∑

m∈Mj
ηi (δU

m
i ) sends each end of Y in⊔

m∈Mj
Um
i to 1 and sends all other ends of Y to 0. By the definition of E(f) : E(Y )→ E(X)

in (the proof of) Lemma 3.13, we have
∑

m∈Mj
ηi (δU

m
i ) = ηi

(
δV j

i

)
◦ E(f). That is, with

ψ = ηi

(
δV j

i

)
we have f∗(ψ) = ψ ◦ E(f), as desired. That completes the proof of the first

conclusion. The second conclusion follows immediately from the first. �

With the previous two lemmas in hand, we prove that the splitting in Theorem 7.3 is natural.
Let (Y, s) be another ray-based, metrizable generalized continuum. By Theorem 5.8, there
exists a proper map σ : Y ։ [0,∞) such that σ ◦ s = id : [0,∞)→ [0,∞). Let f : (Y, s)→
(X, r) be a ray-based proper map. Consider the following diagram where each of the four
outer trapezoids is given by Lemmas 7.4 and 7.5 and thus commutes.

(7.7)

C(•, R) C(E(X), R)

H0
e (r) H0

e (X)

H0
e (s) H0

e (Y )

C(•, R) C(E(Y ), R)

i∗

f∗ f∗

ρ∗e

f∗

e

η

∼=

f∗

e

η

∼=

σ∗

e

η

∼=

η

∼=
i∗

We use {•} to denote both one-point spaces E(r) ⊆ E(X) and E(s) ⊆ E(Y ) where no
confusion should arise. It suffices to show that the central square in (7.7) commutes. By
Lemma 7.5, the outer rectangle in (7.7) satisfies

(7.8)

1• 1E(X)

1• 1E(Y )
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and thus commutes. It follows that the central square in (7.7) commutes, as desired. That
completes our proof that the splitting in Theorem 7.3 is natural.

Remarks 7.6.

(a) To summarize, recall the sequence (7.5). Write {•} = E(r) ⊆ E(X). Let
C((E(X), •), R) denote the elements of C(E(X), R) that send • 7→ 0. Notice that
C((E(X), •), R) is both an R-algebra and an ideal of C(E(X), R). We have the
following commutative diagram with exact rows

(7.9)

0 H0
e (r) H0

e (X) H̃0
e (X) 0

0 C(•, R) C(E(X), R) C((E(X), •), R) 0

ρ∗e

η ∼=

r∗e

η ∼= η ∼=

i∗

r∗ j∗

where r∗ : ψ 7→ ψ◦E(r), i∗ : 1• 7→ 1E(X), and j
∗ is inclusion. The left square in (7.9)

that uses the two splitting homomorphisms (dashed) commutes. Both splitting
homomorphisms ρ∗e and i∗ are natural with respect to ray-based proper maps. In
fact, those are the unique natural splitting homomorphisms—for uniqueness of i∗,
consider naturality for ρ : X → [0,∞).

(b) Lemma 7.4 showed that H0
e (X) ∼= C(E(X), R) for each metrizable generalized

continuum X. Thus, if E(X) is finite, then H0
e (X) and H0 (E(X)) are isomorphic

since both are isomorphic to R|E(X)|. However, if E(X) is infinite, then H0
e (X) and

H0 (E(X)) are not isomorphic.9 For the infinite comb space X from Examples 3.5
and shown in Figure 7.2, H0

e (X) ∼= C(E(X),Z) is countably infinite, whereas

H0 (E(X)) ∼= Hom (H0 (E(X)) ,Z) ∼=
∏

E(X)

Z

is uncountable—see also [Sch08] and [CGH20, App. A].

Continuing with the comb space example, let E(X) = {ε0, ε1, ε2, . . .} as in Fig-
ure 7.2. Let 1E(X) : E(X) → R be the constant 1 map and, for each i ∈ Z+, let

…

ε 1

ε 2
ε 3

ε 0

ε 4
ε 6
ε 5

Figure 7.2. Infinite comb space with ends labelled.

1{εi} : E(X)→ R denote the map sending εi 7→ 1 and all other ends of X to 0. As

E(X) is homeomorphic to {0} ∪ {1/i | i ∈ Z+} ⊆ R, H0
e (X) ∼= C(E(X), R) is the

free R-algebra with basis
{
1E(X),1{ε1},1{ε2}, . . .

}
.

9Raymond erroneously claimed [Ray60, Thm. 1.13] that H0 (E(X)) and H0
e (X) are isomorphic. Appar-

ently, the misstep occurred in the paragraph preceding that theorem where “continuity” meant cohomology
commutes with the inverse limit of topological inclusions. That is false by the infinite comb space example.
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(c) A celebrated theorem of Nöbeling [Nöb68] shows that if A is a profinite space—
meaning the limit of an inverse system of finite sets—then C(A,Z) is a free Z-module
(see also Fuchs [Fuc73, Cor. 97.7]). Nöbeling’s theorem implies that C(E(X),Z) is a
free Z-module for each metrizable generalized continuum X. In Theorem 7.7 below,
we give a very direct proof—not using Nöbeling’s theorem—that H0

e (X) is a free R-
module of countable rank for each metrizable generalized continuum X. Thus, our
work provides a proof of Nöbeling’s theorem. Namely, let A = lim

←−
Ai be a profinite

space where i ∈ Z+. Replace each Ai with the image of the projection A→ Ai and
restrict the bonding functions Ai ← Ai+1 to obtain an inverse system—still denoted
Ai—of surjections with the same limit A. Construct a locally finite simplicial tree T
with efficient compact exhaustion {Ki} such that inverse system U (T −Ki) in (3.1)
is isomorphic to Ai. So, E(T ) ≈ A. By Lemma 7.4, C(E(T ), R) ∼= H0

e (T ). Thus

C(A,R) ∼= C(E(T ), R) ∼= H0
e (T )

where H0
e (T ) is a free R-module of countable rank by Theorem 7.7. That completes

our proof of Nöbeling’s theorem. Our proof of Nöbeling’s theorem constructs an
explicit basis and does not use transfinite induction—compare [Asg24, pp. 1–2].

(d) There are several reasons for requiring baserays to be embedded: topological sim-
plicity, the end sum operation on manifolds in the next section, the existence of a
retract to each baseray as in Theorem 5.8, and the splitting in Theorem 7.3. In
fact, the splitting in Theorem 7.3 can fail dramatically for nonembedded rays as we
now show. Fix a point p in the circle S1. Consider Y = S(S1) = [0,∞)× S1 where
H∗

e (Y ;R) ∼= H∗
(
S1;R

)
. Let r be a (nonembedded) proper ray in Y that: starts at

Y = S (S 
1

 )

r

Figure 7.3. Stringer Y = S(S1) on S1 with (nonembedded) proper ray r.

(0, p), runs once around the circle {0}×S1, runs along the segment [0, 1]×{p}, runs
once around the circle {1}×S1, runs along the segment [1, 2]×{p}, and so on, out-
wards towards the end of Y as in Figure 7.3. Using arguments as in [CH14, CGH20],
one may verify that H∗

e (Y, r;R) = H2
e (Y, r;R)

∼= RJxK/R[x]. Here, RJxK/R[x] is
the R-module of formal power series modulo polynomials. Thus, the conclusions of
Theorem 7.3 are radically false for Y and the nonembedded proper ray r.

The remainder of this section is devoted to a direct proof of the following.

Theorem 7.7. Let (X, r) be a ray-based, metrizable generalized continuum. Then, there is
an exact sequence of free R-modules of countable rank

(7.10) 0 H0
e (r) H0

e (X) H̃0
e (X) 0
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that splits naturally in (X, r). Further, |E(X)| = rankH0
e (X) = rankH̃0

e (X)+ 1 (infinities
not distinguished).

Remark 7.8. There is some overlap between Theorems 7.3 and 7.7, although the con-
clusions and the approaches differ. The fact that H0

e (X) is free of rank equal to the
number of ends of X—infinities not distinguished—has been observed by others, namely by
Specker [Spe49, §5] for simplicial and CW complexes and integer coefficients, Epstein [Eps61,
p. 110] for locally finite simplicial complexes and field coefficients, and Geoghegan [Geo08,
p. 298] for strongly locally finite CW complexes and PID coefficients.

Before we prove Theorem 7.7, we observe some useful algebraic facts. The direct limit
of a direct system of free R-modules of finite rank is a flat R-module by Lazard’s theo-
rem [Lam99, p. 134], however, it need not be a free R-module. Consider the direct system

(7.11) Z Z Z · · ·
×2 ×2 ×2

with direct limit Z[1/2]. The element 1 ∈ Z[1/2] is divisible by arbitrarily large powers of
2, so Z[1/2] is not a free Z-module. Thus, an additional condition is required to ensure
freeness of a direct limit of free R-modules of finite rank. One such condition—suitable for
our purposes—is the following. An injective homomorphism f : G→ H of finitely generated
R-modules is extension preserving if whenever a set S ⊆ G can be extended to a basis
of G, then f(S) can be extended to a basis of H.

Lemma 7.9. Let f : G→ H be an injective homomorphism of finitely generated R-modules.
Then, f is extension preserving if and only if there exists a basis B of G such that f(B)
extends to a basis of H.

Proof. The forward direction is clear. For the reverse implication, we are given a basis
B of G such that f(B) extends to a basis f(B) ⊔ C of H. So, Im f = span f(B) and
H = Im f ⊕ spanC—an internal direct sum of R-modules. Consider a set S ⊆ G that can
be extended to a basis S⊔T of G. That implies Im f = span f(S)⊔f(T ) and f(S)⊔f(T )⊔C
is a basis of H extending f(S), as desired. �

Lemma 7.10. For each n ∈ Z+, the diagonal homomorphism ∆ : R → Rn defined by
1 7→ (1, . . . , 1) is extension preserving.

Proof. Let ei denote the ith standard basis element of Rn. Then, {∆(1), e2, e3, . . . , en} is a
basis of Rn and the result follows by Lemma 7.9. �

Lemma 7.11. Given extension preserving homomorphisms fi : Gi → Hi for 1 ≤ i ≤ n,
define G = ⊕n

i=1Gi and H = ⊕n
i=1Hi—external direct sums of R-modules. Then, the

homomorphism f = ⊕n
i=1fi : G→ H is extension preserving.

Proof. For each 1 ≤ i ≤ n, let Bi be a basis of Gi, and let ϕi : Gi → G and ψi : Hi → H be
the canonical inclusions. Notice that f ◦ ϕi = ψi ◦ fi, and B = ⊔ni=1ϕi (Bi) is a basis of G.
By hypothesis, fi (Bi) extends to a basis fi (Bi)⊔Ci of Hi. Hence, f(B) extends to a basis
f(B) ⊔ ψ1 (C1) ⊔ · · · ⊔ ψn (Cn) of H and the result follows by Lemma 7.9. �
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Lemma 7.12. Let G1
f1
−→ G2

f2
−→ G3

f3
−→ · · · be a direct system of free R-modules of finite

rank where each fi is extension preserving. Then, the direct limit G = lim
−→

Gi is a free
R-module of countable rank.

Proof. The direct limit gives us a commutative diagram

(7.12) G1 G2 G3 · · · G = lim
−→

Gi
f1

θ1

f2

θ2

f3

θ3

As each fi is injective, the standard model of the direct limit implies that each θi is injective.
Inductively, we define a basis Ai of Gi and a subset Bi ⊆ Ai for i = 1, 2, 3, . . .. Let A1 be
a basis of G1, and define B1 = A1. As f1 is extension preserving, f1 (A1) extends to a
basis A2 = f1 (A1) ⊔ B2 of G2. Given Ai = fi−1 (Ai−1) ⊔ Bi a basis of Gi, fi is extension
preserving and so fi (Ai) extends to a basis Ai+1 = fi (Ai) ⊔Bi+1 of Gi+1. That completes
our definition of the bases Ai of Gi and the subsets Bi ⊆ Ai. We define B = ∪∞i=1θi (Ai)
and claim that

(7.13) B = ∪∞i=1θi (Ai) = ⊔
∞
i=1θi (Bi)

is a basis of G. Evidently, that claim proves the lemma since a countable collection of finite
sets is countable. To prove that claim, induction shows that ∪ni=1θi (Ai) = ∪

n
i=1θi (Bi) for

each n ∈ Z+. Hence, ∪∞i=1θi (Ai) = ∪
∞
i=1θi (Bi). For disjointedness of the θi (Bi), suppose,

by way of contradiction, that θi (bi) = θj (bj) for some i < j, bi ∈ Bi, and bj ∈ Bj . Let
a = fj−1 ◦ · · · fi+1 ◦ fi(bi) ∈ fj−1 (Aj−1) ⊆ Aj − Bj . By commutativity, θj(a) = θj(bj).
As θj is injective, a = bj . However, bj ∈ Bj and a /∈ Bj . That contradiction completes
the proof of disjointedness. It remains to prove B is a basis of G. To see B spans G, note
that each element of G has a representative in some Gi and Ai is a basis of Gi. Finally,
θ1 (A1) ⊆ θ2 (A2) ⊆ · · · is a nested sequence of linearly independent sets—since each Ai is
linearly independent and each θi is injective—and so B is linearly independent. �

Now, we prove Theorem 7.7.

Proof of Theorem 7.7. We are given (X, r), a ray-based, metrizable generalized continuum.
By Corollary 4.6, there exists an r-efficient compact exhaustion {Ki} of X. For each i ∈ Z+,
let Vi = X −Ki and let ri = Im r−Ki. The components and the path-components of each
Vi coincide since X is metrizable—see Remark 5.3. As {Ki} is an r-efficient compact

exhaustion of X, each Ki is connected, the components
{
V j
i

}µi

j=1
of Vi are all unbounded

and finite in number (see Lemma 2.7), r−1 (Ki) is an efficient compact exhaustion of [0,∞),
and ri is connected. We have the following commutative diagram of free Z-modules of finite
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rank.

(7.14)

0 H0 (r1) H0 (V1) H0 (V1, r1) 0

0 H0 (r2) H0 (V2) H0 (V2, r2) 0

...
...

...

s1∼=

s2∼=

In (7.14), the rows come from the long exact sequences of the pairs (Vi, ri) and the vertical
homomorphisms are induced by the inclusions (V1, r1) ←֓ (V2, r2) ←֓ · · · . We haveH0 (Vi) =〈
V j
i

〉µi

j=1

∼= Z
µi and H0 (ri) = 〈ri〉 ∼= Z. Lemmas 2.8 (montonicity) and 3.1 imply that

1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ · · · is a nondecreasing sequence of positive integers. Those lemmas

also imply that the vertical homomorphism H0 (Vi) → H0 (Vi−1) sends V j
i to the unique

component of Vi−1 containing V
j
i and that vertical homomorphism is surjective. Essentially,

that homomorphism is a finite direct sum of homomorphisms of the form Z
n → Z where

ek 7→ 1 for all k. The unique natural splitting si : H0 (Vi) → H0 (ri) of the ith row

sends V j
i 7→ ri for all j. That splitting is essentially Z

µi → Z where ek 7→ 1 for all k.
Diagram (7.14) commutes, including the splittings.

Apply the HomZ (−, R) functor and then the universal coefficients theorem to (7.14) to
obtain the following commutative diagram of free R-modules of finite rank.

(7.15)

0 H0 (r1) H0 (V1) H0 (V1, r1) 0

0 H0 (r2) H0 (V2) H0 (V2, r2) 0

...
...

...

σ1
∼=

σ2
∼=

We obtain short exact sequences in each row by left exactness of the HomZ (−, R) func-
tor and since each row in (7.14) splits. By the universal coefficients theorem, the ho-
momorphisms in (7.15) are dual to those in (7.14). In particular, for each i ∈ Z+

we have H0 (Vi) ∼=
〈
δV j

i

〉µi

j=1

∼= Rµi and H0 (ri) ∼= 〈δri〉 ∼= R. The homomorphism

H0 (Vi) → H0 (Vi+1) sends δV j
i to the sum of the components of Vi+1 that V j

i con-
tains. Essentially, that homomorphism is a finite direct sum of diagonal homomorphisms
∆ : R→ Rn sending 1 7→ (1, . . . , 1). By Lemmas 7.10 and 7.11, that homomorphism is ex-
tension preserving. The unique natural splitting σi : H

0 (ri)→ H0 (Vi) of the ith row sends

δri 7→
∑µi

j=1 δV
j
i . That splitting is essentially the diagonal homomorphism ∆ : R → Rµi

sending 1 7→ (1, . . . , 1). Diagram (7.15) commutes, including the splittings.
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Apply the direct limit functor—which is exact—to (7.15) to obtain the following exact
sequence.

(7.16) 0 H0
e (r) H0

e (X) H0
e (X, r) 0

By our definition of reduced end cohomology, we have H̃0
e (X) = H0

e (X, r). Therefore, (7.16)
is our desired exact sequence (7.10). Lemma 7.12 implies that H0

e (X) is a free R-module
of countable rank. We know H∗

e (r) = H0
e (r)

∼= R. So, the exact sequence (7.10) implies

that H̃0
e (X) is a free R-module and rankH0

e (X) = rankH̃0
e (X)+ 1. If X has k ∈ Z+ ends,

then the sequence 1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ · · · eventually stabilizes at k and H0
e (X) ∼= Rk. If

X has infinitely many ends, then the sequence 1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ · · · is unbounded. As
each H0 (Vi) injects into H

0
e (X), we get that the rank of H0

e (X) is countably infinite. The
splittings σi : H

0 (ri)→ H0 (Vi) yield a splitting H0
e (r)→ H0

e (X) of (7.16). For naturality
of that splitting, let f : (Y, s)→ (X, r) be a ray-based proper map of metrizable generalized
continua. Take the commutative diagram formed from (7.15), the analogous diagram for
(Y, s), and the induced homomorphisms from the former to the latter. Applying the direct
limit functor yields the desired commutative diagram. �

Note that in Section 4 we introduced and proved the existence of r-efficient compact
exhaustions—and compact exhaustions of maps more generally—precisely to make the al-
gebra in the previous proof as simple as possible. We leave the interested reader with an
exercise: construct an explicit basis for H0

e (X) ∼= C(E(X), R) where X is the infinite binary
tree in Figure 3.2.

8. End cohomology of an end sum

End sum is an operation that combines two noncompact manifolds along an end of each
manifold. It was introduced by Gompf [Gom83]—then a graduate student—to construct
various smooth manifolds homeomorphic but not diffeomorphic to R

4. End sum is now a
major tool in 4-manifolds and has applications in dimensions 2, 3, and higher—see [Gom85]
for 4-manifolds, [CG19] and [CGH20] for background, manifolds of dimensions ≥ 3, and
further references, and [AC23] for surfaces. In this section, let A ≈ B mean that A and
B are diffeomorphic—not necessarily preserving orientation—and let Int denote manifold
interior.

Colloquially, Gompf [Gom83, p. 322] described end sum as gluing together two noncompact
manifolds along an end of each manifold using a piece of scotch tape. In more detail, let
M be a smooth, connected, oriented, noncompact manifold of dimension n + 1 ≥ 2 with
compact—possibly empty—boundary. Let r : [0,∞)→M be a smoothly embedded proper
ray in IntM . We call (M, r) an end sum pair. Let (M, r) and (N, s) be end sum pairs of
the same dimension n + 1 ≥ 2. Let νr ⊂ IntM and νs ⊂ IntN be smooth, closed regular

neighborhoods of r and s respectively. Define M̂ =M − Intνr and N̂ = N − Intνs. Notice

that M̂ contains ∂νr ≈ R
n as a boundary component, and similarly N̂ contains ∂νs ≈ R

n as
a boundary component. Orient boundaries by the outward normal first convention [GP74,
Ch. 3]. As indicated in Figure 8.1, the end sum S = (M, r) ♮ (N, s) of (M, r) and (N, s)

is defined to be the oriented manifold obtained by gluing together M̂ and N̂ along ∂νr
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M

H

N S

r s

Figure 8.1. End sum pairs (M, r) and (N, s) with regular neighborhoods
νr and νs hatched (left) and end sum S = (M, r) ♮ (N, s) (right).

and ∂νs by an orientation reversing diffeomorphism10. Let H ⊂ S denote the properly
embedded copy of Rn that is the common image of both ∂νr and ∂νs.

The main goal of this section is to compute the end cohomology algebra of S in terms of
the algebras of M and N . Such a theorem was originally conceived by King (unpublished)
during the collaboration [CKS12]. Guilbault, Haggerty, and the second author [CGH20, §5]
carefully fixed orientation conventions and proved King’s theorem. At that time, a precise
definition of reduced end cohomology was lacking—nevertheless, all applications in [CGH20]
are valid by the proofs therein since only end cohomology elements of positive dimension
were utilized. We reuse all orientation conventions from [CGH20, §5] and now employ our
precise definition of reduced end cohomology. Throughout this section, R is a PID.

The end sum S is an adjunction space of M̂ and N̂ . We have smooth, proper embeddings

iM :
(
M̂, ∂νr

)
→ (S,H) and iN :

(
N̂ , ∂νs

)
→ (S,H). Choose the orientation of H so

that the restriction iM | ∂νr : ∂νr → H is an orientation preserving diffeomorphism. So,
iN | ∂νs : ∂νs → H is an orientation reversing diffeomorphism. Choose u ⊂ H ≈ R

n an
unknotted smooth, proper ray. Let r′ ⊂ ∂νr and s′ ⊂ ∂νs be the smooth, proper rays
carried to u by iM and iN respectively. Thus, we have smooth, proper embeddings of closed
triples

(8.1)
(
M̂, ∂νr, r′

)
(S,H, u)

(
N̂ , ∂νs, s′

)
iM iN

as depicted in Figure 8.2

M

H

NS¶ ¶

∂νr ∂νs

r' s'u
iM iN

Figure 8.2. Smooth, proper embeddings of closed triples.

10For details and variations on the end sum operation, see [CKS12], [CG19], and [AC23, §3]. In particular,
the latter includes a proof that proper data ensures the end sum is Hausdorff.
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The maps iM and iN induce the commutative diagram
(8.2)

Hk
e (∂νr, r′) Hk

e

(
M̂, r′

)
Hk

e

(
M̂, ∂νr

)
Hk−1

e (∂νr, r′)

Hk
e (H,u) Hk

e (S, u) Hk
e (S,H) Hk−1

e (H,u)

Hk
e (∂νs, s′) Hk

e

(
N̂ , s′

)
Hk

e

(
N̂ , ∂νs

)
Hk−1

e (∂νs, s′)

δM

j∗e

i∗M

i∗N

δS

∼=

∼=

δN

where the rows are the long exact sequences of the closed triples (8.1). As H ≈ R
n, n ≥ 1,

and u is unknotted in H, the long exact sequence of the closed pair (H,u) implies that
Hn−1

e (H,u) ∼= R and Hk
e (H,u) = {0} otherwise. So, j∗e : Hk

e (S,H) → Hk
e (S, u) is an

isomorphism in each dimension k 6= n and k 6= n − 1, is surjective in dimension n, and is
injective in dimension n− 1. It will turn out that j∗e is an isomorphism in dimension n− 1
as well.

The algebra H∗
e (S,H) is related to algebras for M and N by a well-known commutative

diagram that yields Mayer-Vietoris sequences—see [ES52, p. 32], [May99CC, pp. 110 &
145], and [CGH20, pp. 470–471]. In particular, there is an isomorphism

(8.3)
h : H∗

e (S,H) H∗
e

(
M̂, ∂νr

)
⊕H∗

e

(
N̂ , ∂νs

)

α (i∗M (α), i∗N (α))

∼=

where the cup product is coordinatewise in the direct sum. We also have isomorphisms

(8.4) H∗
e

(
M̂, ∂νr

)
H∗

e (M, νr) H∗
e (M, r) = H̃∗

e (M)
∼= ∼=

where the first follows from excision and the second is induced by inclusion—a proper
homotopy equivalence since νr nicely collapses to r. Similarly, we have the analogous
isomorphisms for N . Hence, we have an isomorphism

(8.5) H∗
e (S,H) ∼= H∗

e (M, r)⊕H∗
e (N, s)

We have shown that

(8.6) Hk
e (S, u) ∼= Hk

e (M, r)⊕Hk
e (N, s)

for each dimension k 6= n and k 6= n − 1. To understand those remaining dimensions, we
must look more closely at the coboundary homomorphism δS in (8.2). For that purpose,
we recall notation and orientation conventions from [CGH20, §5].

By [CGH20, Lemma 5.1], there is a smooth, proper Morse function h : M → R that is
bounded below and is well-behaved on νr. Namely, h| r is projection, h| νr has a unique
critical point that is a global minimum occurring in ∂νr, h−1 ([t,∞))∩ (νr, ∂νr) ≈ [t,∞)×(
Dn, Sn−1

)
for each t ∈ [0,∞), each nonnegative integer is a regular value of h, and the

boundary of M—compact by hypothesis—is contained in h−1 ((−∞, 0)). Such a Morse
function is constructed using Whitney’s embedding theorem and is depicted as height in
Figure 8.3. Figure 8.4 contains further submanifolds of M that we now define.
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∂νr

Z j
K j

M j

h¯1(j )

r r' j

Figure 8.3. Manifold M with a Morse function h depicted as height.

∂

M j

Z j

ɵ

ɵ

F j
ɵM j

Z j

F j

Z j
ɵ∆ j

∂r' j

r' j

∂F j
ɵ= −

Figure 8.4. Closed submanifoldMj ofM and relevant closed submanifolds
of Mj .

For each nonnegative integer j, we define:

Kj = h−1 ((−∞, j])

Mj = h−1 ([j,∞))

Fj = νr ∩Mj ≈ [j,∞)×Dn

Zj = the unique component of Mj ∩Kj = h−1(j) that meets νr

M̂j =Mj − Intνr

F̂j = ∂νr ∩Mj ≈ [j,∞)× Sn−1

Ẑj = Zj − Intνr

rj = r ∩Mj

r′j = r′ ∩Mj

∆j = νr ∩ Zj ≈ D
n

As an aid in assimilating that notation, recall the mnemonic from [CGH20, p. 481]: X̂
denotes a “nicely punctured” copy of X. Orient Mj and Kj as codimension-0 submanifolds
of M . Note that {Kj}

∞
j=0 is a compact exhaustion of M , and Mj ∩ Kj = h−1(j) is a

nonempty, finite topological disjoint union of closed n-manifolds. Equip ∂Kj with the

boundary orientation. Orient Zj and Ẑj as codimension-0 submanifolds of ∂Kj . Equip ∂Ẑj

with the boundary orientation. Note that ∂Ẑj ≈ S
n−1.
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With integer coefficients, let
[
∂Ẑj

]
∈ Hn−1

(
∂Ẑj

)
denote the fundamental class, and let

[
Ẑj , ∂Ẑj

]
∈ Hn

(
Ẑj , ∂Ẑj

)
denote the relative fundamental class—see Kreck [Kre13, pp. 5–

6]. If n > 1, then both of those groups are infinite cyclic with preferred generators given by

the fundamental classes, and the long exact sequence of the pair
(
Ẑj , ∂Ẑj

)
contains

(8.7)
Z ∼= Hn

(
Ẑj , ∂Ẑj

)
Hn−1

(
∂Ẑj

)
∼= Z

[
Ẑj , ∂Ẑj

] [
∂Ẑj

]

∂∗
∼=

If n = 1, then (8.7) becomes

(8.8)
Z ∼= H1

(
Ẑj , ∂Ẑj

)
H0

(
∂Ẑj

)
∼= Z

2

[
Ẑj , ∂Ẑj

] [
∂Ẑj

]

∂∗

where ∂∗ sends 1 7→ (1,−1). In any case n ≥ 1, the long exact sequence of the

triple
(
Ẑj , ∂Ẑj , ∂r

′
j

)
—see May [May99CC, p. 110]—contains ∂∗ : Hn

(
Ẑj , ∂Ẑj

)
→

Hn−1

(
∂Ẑj , ∂r

′
j

)
. By definition, that boundary homomorphism is the composition

(8.9) Hn

(
Ẑj , ∂Ẑj

)
Hn−1

(
∂Ẑj

)
Hn−1

(
∂Ẑj , ∂r

′
j

)
∂∗

of homomorphisms from the long exact sequences of the pairs
(
Ẑj , ∂Ẑj

)
and

(
∂Ẑj , ∂r

′
j

)
.

It is straightforward to verify that overall composition is an isomorphism of copies of Z. So,
we have

(8.10)
Z ∼= Hn

(
Ẑj , ∂Ẑj

)
Hn−1

(
∂Ẑj , ∂r

′
j

)
∼= Z

[
Ẑj , ∂Ẑj

] [
∂Ẑj , ∂r

′
j

]

∂∗
∼=

where
[
∂Ẑj , ∂r

′
j

]
is defined to be the image of

[
Ẑj , ∂Ẑj

]
under ∂∗. By the universal

coefficients theorem and taking the obvious duals, the long exact sequence of the triple(
Ẑj , ∂Ẑj , ∂r

′
j

)
contains

(8.11)
R ∼= Hn

(
Ẑj , ∂Ẑj

)
Hn−1

(
∂Ẑj , ∂r

′
j

)
∼= R

[
Ẑj , ∂Ẑj

]∗ [
∂Ẑj , ∂r

′
j

]∗

δ
∼=
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The inclusion maps of closed triples
(
Ẑj , ∂Ẑj , ∂r

′
j

)
→֒

(
M̂j , F̂j , r

′
j

)
yield the commutative

diagram
(8.12)

Hk
(
∂Ẑj , ∂r

′
j

)
Hk

(
Ẑj , ∂r

′
j

)
Hk

(
Ẑj , ∂Ẑj

)
Hk−1

(
∂Ẑj , ∂r

′
j

)

Hk
(
F̂j , r

′
j

)
Hk

(
M̂j , r

′
j

)
Hk

(
M̂j , F̂j

)
Hk−1

(
F̂j , r

′
j

)

δ

∼=

δ

∼=

where the rows are the long exact sequences of the closed triples. The indicated ver-

tical isomorphisms hold in all dimensions since
(
F̂j , r

′
j

)
strong deformation retracts to

(
∂Ẑj , ∂r

′
j

)
—see Figure 8.4. In dimension k = n, the coboundary homomorphism (8.11)

is an isomorphism. Thus, commutativity of (8.12) implies that the coboundary homomor-

phism δ : Hn−1
(
F̂j , r

′
j

)
→ Hn

(
M̂j , F̂j

)
is injective. Taking the direct limit, we get that

the coboundary homomorphism δM : Hn−1
e (∂νr, r′) → Hn

e

(
M̂, ∂νr

)
is injective. Simi-

larly, δN : Hn−1
e (∂νs, s′) → Hn

e

(
N̂ , ∂νs

)
is injective. Commutativity and of (8.2) and

injectivity of δM—or injectivity of δN—imply that δS : Hn−1
e (H,u) → Hn

e (S,H) is injec-
tive. Exactness of (8.2) and injectivity of δS imply that j∗e : Hn−1

e (S,H) → Hn−1
e (S, u)

is surjective. So, j∗e : Hk
e (S,H) → Hk

e (S, u) is an isomorphism in each dimension k 6= n
and is surjective in dimension n. Hence, H∗

e (S, u)
∼= H∗

e (S,H) /K where K is the kernel
of j∗e : Hn

e (S,H) → Hn
e (S, u). The kernel K is an ideal of H∗

e (S,H) and is principal
since—by exactness in (8.2)—K equals the image of δS : Hn−1

e (H,u) → Hn
e (S,H) and

Hn−1
e (H,u) ∼= R. Recalling (8.3) and (8.5), we wish to identify K in H∗

e (M, r)⊕H∗
e (N, s).

By (8.11) and (8.12), the classes
[
∂Ẑj , ∂r

′
j

]∗
determine a preferred generator

[
∂νr, r′

]∗
e
∈ Hn−1

e

(
∂νr, r′

)
∼= lim
−→
j

Hn−1
(
F̂j , r

′
j

)
∼= R

Let ω ∈ Hn−1
e (H,u) ∼= R be the generator that is sent to [∂νr, r′]∗e by iM |. So, iN | sends ω

to − [∂νs, s′]∗e . Define [r]∗e ∈ H
n
e (M, r)—which we call a ray-fundamental class—to be

the image of [∂νr, r′]∗e under the isomorphisms (8.4) and similarly for N . Thus, we have a
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portion of (8.2) augmented with (8.4)
(8.13)

Hn
e (M, r) [r]∗e

Hn
e

(
M̂, ∂νr

)
Hn−1

e (∂νr, r′) ∼= R δM
(
[∂νr, r′]∗e

)
[∂νr, r′]∗e

Hn
e (S,H) Hn−1

e (H,u) ∼= R δS(ω) ω

Hn
e

(
N̂ , ∂νs

)
Hn−1

e (∂νs, s′) ∼= R δN
(
− [∂νs, s′]∗e

)
− [∂νs, s′]∗e

Hn
e (N, s) − [s]∗e

∼=(8.4)

δM

i∗M

i∗N

δS

∼=

∼=

∼=(8.4)

δN

By exactness K = Im δS , and under the isomorphism (8.5) K corresponds to the principal
ideal 〈([r]∗e ,− [s]∗e)〉 of dimension n. Thus, we have proved the following version of King’s
theorem.

Theorem 8.1. Let (M, r) and (N, s) be end sum pairs of dimension n + 1 ≥ 2. Let
S = (M, r) ♮ (N, s) be the end sum of (M, r) and (N, s). There exists an isomorphism of
graded R-algebras

(8.14) H̃∗
e (S)

∼=
(
H̃∗

e (M)⊕ H̃∗
e (N)

)
/ 〈([r]∗e ,− [s]∗e)〉

where, by our definition, H̃∗
e (S) = H∗

e (S, u), H̃∗
e (M) = H∗

e (M, r), and H̃∗
e (N) =

H∗
e (N, s).

Theorems 7.7 and 8.1 immediately imply the following.

Corollary 8.2. Furthermore in Theorem 8.1, |E(S)| = |E(M)|+ |E(N)|−1 (infinities not
distinguished). In particular, if M and N are one-ended, then S is one-ended.

Remarks 8.3.

(a) Regarding Corollary 8.2, Axon and the second author [AC23, Lemma 5.9] proved
that E(S) is homeomorphic to the quotient space of the topological disjoint union of
E(M) and E(N) where the ends ρ and σ—pointed to by r and s respectively—are
identified.

(b) The proof of our version of King’s theorem is structured similarly to the proof
in [CGH20, §5] with the following distinctions: we employed our precise definition
of reduced end cohomology, used additional baserays r′ and s′, and correspondingly
used triples of spaces. Further, the seemingly two different conclusions in King’s
theorem [CGH20, Thm. 5.4] dissolved into a single conclusion in our version.
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(c) In the construction of the end sum S, an unknotted ray u was chosen in H ≈ R
n.

When n > 1, all such rays are ambiently isotopic in H. When n = 1, H contains
two such rays up to ambient isotopy. Those rays need not be ambiently isotopic in
S either, although they do point to the same end of S and they are related by a
self-homeomorphism of S—see the proof of Lemma 5.9 and Theorem 6.10 in [AC23].

(d) Ray-fundamental classes may be computed in some interesting cases—see [CGH20,
Ex. 5.3 & §6].

9. Future directions

We conjecture that the main results of Section 5—existence of a baseray and a proper retract
to each baseray—extend to trees. A tree is a locally finite, acyclic simplicial 1-complex.
Each tree is a generalized continuum. A leaf is a vertex of degree 1. A tree is rooted

provided it contains a distinguished vertex called the root.

Conjecture 1 (Existence of nice embedded tree). Let X be a noncompact, metrizable gen-
eralized continuum. Then, there exists an infinite rooted tree T and a proper (topological)
embedding τ : T ֌ X such that E(τ) : E(T ) → E(X) is a homeomorphism. Further, T
may be chosen to contain no leaves or such that the root is the unique leaf.

Conjecture 2 (Existence of retract to tree). Let X be a noncompact generalized contin-
uum. If τ : T ֌ X is a proper embedding of an infinite tree T and E(τ) is injective,
then there exists a proper map ρ : X → T such that ρ ◦ τ = id : T → T . In particular,
τ ◦ ρ : X → Im τ is a proper retraction of X onto the image of τ .

Conjecture 1 may require some additional niceness hypothesis on the space X. Halin’s tree
lemma [BQ01, pp. 63 & 78] is a version of Conjecture 1 for CW complexes. A natural
approach to Conjecture 2 is to argue as in the ray version but using the Tietze extension
theorem with target a finite tree—which holds since each finite tree is a retract of the
2-disk. Proofs of versions of those two conjectures would immediately yield a splitting
result more general than Theorem 7.3. Guilbault and the second author will utilize such
results for manifolds in a forthcoming paper to prove that for each k, the k-dimensional
end cohomology R-module of an end sum is independent up to isomorphism of the chosen
rays. Thus, the ring structure is crucial for using end cohomology to distinguish various
end sums of given manifolds, as has been done in [CH14, CGH20].

The dependence of end sum on ray choice has been well-studied—see [CH14, CG19,
CGH20]—yet interesting questions remain. Guilbault, Haggerty, and the second au-
thor [CGH20, Ques. 1.1] have asked: for contractible, open n-manfiolds M and N of dimen-
sion n ≥ 4, is M ♮N well-defined up to diffeomorphism or up to homeomorphism? Poincaré
duality at the end—see Geoghegan [Geo08, pp. 361–362]—implies that the end cohomology
algebra of a contractible, open n-manifold is isomorphic to the ordinary cohomology algebra
of Sn−1. Thus, if one hopes to construct examples answering that question in the negative,
then invariants other than end cohomology appear to be necessary.

It is interesting to ask whether end sums of two smooth, open, one-ended n-manifolds
can be homeomorphic but not diffeomorphic. Examples for some n ≥ 8 were constructed
by Gompf and the second author [CG19, Ex. 3.4(a)]. It is unknown whether examples
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exist in dimension n = 4. A natural question is: Let X be a smooth, one-ended, oriented
4–manifold. Can summing X with a fixed exotic R

4, preserving orientation, yield different
diffeomorphism types depending on the choice of ray in X? For more on that question,
see [CG19, pp. 1303, 1325–1326].

For a variety of additional open questions on ends—including interesting aspects outside of
the scope of the present paper—see Guilbault [Gui16].
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