
Grade School Triangles

Jack S. Calcut

Abstract. In grade school, students learn a standard set of Euclidean triangles. Among this set,
the usual 45–45–90 and 30–60–90 triangles are the only right triangles with rational angles and
side lengths each containing at most one square root. Are there any other such right triangles?
We answer this question completely and present an elegant complement called Ailles’ rect-
angle that deserves to be in every geometry teacher’s toolkit.

1. INTRODUCTION. During grade school, one learns about the Euclidean triangles
shown in Figure 1. These include: (1) 60–60–60, 45–45–90, and 30–60–90 triangles
with nice angles and side lengths and (2) the infinite collection of Pythagorean triple
triangles. As no other triangles are nearly as widely known, one might assume these
are the only nice ones. This sentiment is almost true. To make this precise, we need a
few definitions.
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Figure 1. Grade school triangles.

Definitions. An angle is rational provided it is commensurable with a straight angle;
equivalently, its degree measure is rational or its radian measure is a rational multiple
of π . A quadratic irrational is a number of the form r + s

√
d where r and s are

rational, s �= 0, and d /∈ {0, 1} is a squarefree integer (i.e., p2 � d for all primes p ∈ Z).
A line segment is rational or quadratic irrational provided its length is rational or
quadratic irrational respectively.

Before we state our main result, let us put it into context by describing a sense
in which each triangle shown in row one of Figure 1 is unique. This information is
contained in Table 1.

These three characterizations are simple corollaries of the following well-known
fact (see [10, p. 41] for a proof of Fact 1).

Fact 1. The only rational values of the circular trigonometric functions at rational
multiples of π are the obvious ones, namely 0, ±1/2, and ±1 for cosine and sine, 0
and ±1 for tangent and cotangent, and ±1 and ±2 for secant and cosecant.
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Table 1. Uniqueness of 60–60–60, 45–45–90, and 30–60–90
triangles.

Triangle Properties Unique Similarity Type

Rational angles
60–60–60

Rational sides

Right triangle
45–45–90Rational angles

Rational legs

Right triangle

30–60–90
Rational angles
Rational hypotenuse
At least one rational leg

Proofs of the three characterizations in Table 1 now run as follows. For the first,
observe that each angle in such a triangle has rational cosine by the law of cosines
and hence has measure π/3, π/2, or 2π/3 by Fact 1. The angle sum is π and the
characterization follows (see [6, pp. 228–229] for an alternative proof). For the second,
observe that the tangent of an acute angle is rational and apply Fact 1 (see [2, 3, 4] for
alternative proofs of this characterization). For the third, observe that the cosine of one
of the acute angles is rational and apply Fact 1.

Any one of the three characterizations in Table 1 immediately implies that right
triangles with rational angles and rational sides do not exist. In other words, we have
the following.

Corollary 1. The acute angles in each Pythagorean triple triangle are irrational.

This is why, in grade school, one usually does not learn much about the acute angles
in Pythagorean triple triangles! Corollary 1 deserves to be more widely known. For in-
stance, in 2004 Florida Governor Jeb Bush was naturally stumped when a high school
student asked him the angles in the (3, 4, 5) triangle. Subsequently, there appeared in
the media some bad math, and even some negativity towards mathematics, surround-
ing this incident. This was quite unfortunate since, in fact, it was a wonderful question
with intimate relations to Gaussian integers and planar polygons. See [3] for a very nat-
ural proof of Corollary 1, accessible to bright high school students, which uses unique
factorization of Gaussian integers and presents some applications to geometry.

At this point, it would be a sin of omission not to mention the following enhance-
ment of Corollary 1.

Fact 2. The acute angles in each Pythagorean triple triangle have transcendental ra-
dian measures and transcendental degree measures.

To prove this fact, let �ABC be as in Figure 2 with positive integer side lengths sat-
isfying a2 + b2 = c2. Here α denotes the radian measure of the angle at A. For the first
claim, α = arctan a/b is transcendental by the generalized Lindemann theorem [10,
Thm. 9.11, p. 131] which states that the exponentials of distinct algebraic numbers are
linearly independent over the field of algebraic numbers. The second claim is equiva-
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lent to α/π being transcendental. We have

α

π
= arccos b

c

π
=

−i ln
(

b
c + i

√
1 − b2

c2

)
π

= ln
(

b
c + i a

c

)
iπ

= ln
(

b
c + i a

c

)
ln(−1)

.

The Gelfond-Schneider theorem [10, Thm. 10.2, p. 135] states that if δ, ε �= 0 are
algebraic, then values of ln δ/ ln ε are either rational or transcendental. Corollary 1
implies that α/π is irrational and Fact 2 follows.
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Figure 2. Pythagorean triple triangle �ABC.

We now come to the question that provoked the present work, namely: which right
triangles have rational angles and rational or quadratic irrational sides? In other
words, which right triangles have rational angles and have side lengths that each con-
tain at most one square root? It seems natural to suspect that any such triangle is similar
to a 45–45–90 or a 30–60–90 triangle. Perhaps surprisingly we prove the following.

Theorem. The right triangles with rational angles and with rational or quadratic
irrational sides are precisely the (properly scaled) 45–45–90, 30–60–90, and 15–75–
90 triangles.

Thus, there are exactly three similarity types of right triangles with rational angles
and with side lengths that each contain at most one square root.

After we proved the above theorem, a search of the literature revealed a wonderful
complement called the Ailles’ rectangle named for its discoverer, Douglas Ailles [1].
Figure 3 shows Ailles’ original rectangle which permits one to readily solve a 15–75–
90 triangle. Notice that Ailles’ rectangle is composed exactly of triangles satisfying
the above theorem and, moreover, every similarity type appears (the alternate version
of Ailles’ rectangle in [12, pp. 87–88] does not enjoy the former property as it contains
two side lengths of degree four over Q). Thus the question mark in Figure 1 should be
replaced with the 15–75–90 triangle in Ailles’ rectangle!
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Figure 3. Original Ailles rectangle.
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The above theorem and Ailles’ rectangle provide a neat picture of an instance where
only finitely many objects exist of some specified type. The Platonic solids, being
the only convex and regular solids, are another instance. Such instances of finitely
many sporadic objects can be very impressive. We hope that our theorem and Ailles’
rectangle might entice some students to study field theory and number theory.

This paper is organized as follows. Section 2 reduces the proof of the main theorem
to finitely many similarity types. Section 3 produces an explicit triangle, with algebraic
side lengths, for each possible similarity type. Section 4 develops necessary algebraic
tools. Section 5 completes the proof of the main theorem. Section 6 concludes with
some remarks and questions for further study.

2. REDUCTION TO FINITELY MANY SIMILARITY TYPES. Suppose �ABC
is a right triangle whose acute angles are rational and whose sides are each rational or
quadratic irrational as in Figure 4.

A

B

C

c

b

aβ

α

Figure 4. Right triangle �ABC with rational angles and rational or quadratic irrational sides.

We begin with the following observation.

Lemma 1. Each of the numbers cos α and cos β has degree 1, 2, or 4 over Q.

Proof. As cos α = b/c ∈ Q(b, c), we have the tower of fields

Q ⊆ Q(cos α) ⊆ Q(b, c).

The degrees of these extensions satisfy

[Q(b, c) : Q] = [Q(cos α) : Q] · [Q(b, c) : Q(cos α)]
where [Q(b, c) : Q] equals 1, 2, or 4 since b and c each have degree 1 or 2 over Q.
This proves the result for cos α. The proof for cos β is similar.

Next, recall the following fact.

Lemma 2. If n > 2 and gcd(k, n) = 1, then

degQ

(
cos

2kπ

n

)
= ϕ(n)

2
.

Here ϕ(n) denotes the Euler totient function evaluated at n, which equals, by def-
inition, the number of integers j such that 1 ≤ j ≤ n and gcd( j, n) = 1. Lemma 2
is a simple consequence of the fundamental theorem of Galois theory, since if ζ =
cos(2kπ/n) + i sin(2kπ/n) is a primitive nth root of unity, then degQ Q(ζ ) = ϕ(n)

and Q(cos(2kπ/n)) = Q(ζ + ζ ) is the fixed field in Q(ζ ) of complex conjugation.
We mention that Fact 1 follows from Lemma 2 with a bit of work.
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Lemmas 1 and 2 show that we need a useful lower bound for ϕ(n). A simple lower
bound, sufficient for our purpose, is given below in Lemma 3 (sharper bounds are
known). Recall that if p > 1 is prime and a ∈ N, then ϕ(pa) = pa − pa−1 by di-
rect inspection. Also, ϕ is multiplicative: if gcd(m, n) = 1, then ϕ(mn) = ϕ(m)ϕ(n)

(see [5, p. 15]).

Lemma 3. ϕ(n) ≥ √
n/2.

Proof. The result is clear for n = 1, so let n = 2a pa1
1 pa2

2 · · · pak
k be a prime factoriza-

tion of n where a ≥ 0, the p j s are distinct positive odd primes, and a j ≥ 1 for each j .
Now, for each j we have

ϕ(p
a j
j ) = p

a j
j − p

a j −1
j = p

a j −1
j (p j − 1) ≥ p

a j −1
j p1/2

j = p
a j −1/2
j ≥ p

a j /2
j ,

where the first inequality used p j ≥ 3. For the prime 2, we have ϕ(20) = 1 and if
a ≥ 1, then

ϕ(2a) = 2a − 2a−1 = 2a−1(2 − 1) = 2a−1.

In either case, we have ϕ(2a) ≥ (2a/2)/
√

2. Using multiplicativity of ϕ, we obtain

ϕ(n) = ϕ(2a)ϕ(pa1
1 )ϕ(pa2

2 ) · · ·ϕ(pak
k ) ≥ 2a/2

√
2

pa1/2
1 pa2/2

2 · · · pak/2
k =

√
n√
2
.

Combining the above, we obtain the following.

Lemma 4. The radian measures α and β both lie in the set

S =
{

π

15
,

π

12
,

π

10
,
π

8
,

2π

15
,
π

6
,
π

5
,
π

4
,

4π

15
,

3π

10
,
π

3
,

3π

8
,

2π

5
,

5π

12
,

7π

15

}
.

Proof. By Lemma 1, cos α has degree 1, 2, or 4 over Q. Let α = 2kπ/n where
gcd(k, n) = 1, k ∈ N, and n > 2 (since α < π/2). By Lemmas 2 and 3, we need
only consider the cases 3 ≤ n ≤ 128. Either by hand or, better, using a computational
algebra system such as MAGMA, we compute ϕ(n)/2 for these values of n and find
that n lies in the set

{3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30}.

For each of these values of n, one simply produces the corresponding values of k with
gcd(k, n) = 1 and 0 < α = 2kπ/n < π/2. The proof for β is identical.

As α and β are complementary and lie in S, we obtain our desired reduction to a
finite set of possible similarity types.

Proposition 1. The multiset {α, β} lies in the set

T =
{{π

6
,
π

3

}
,
{π

4
,
π

4

}
,

{
π

12
,

5π

12

}
,

{
π

10
,

2π

5

}
,

{
π

8
,

3π

8

}
,

{
π

5
,

3π

10

}}
.
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We mention that the previous result may be obtained using sine instead of cosine.
Using tangent, however, yields 12 possibilities instead of six and leaves one with more
work. The first two elements of T yield the two well-known similarity types in the
main theorem. The remainder of the proof is concerned with the last four elements
of T .

3. EXPLICIT TRIANGLES. In this section, we produce four explicit right triangles
with algebraic side lengths, each triangle representing one of the last four similarity
types in T (see Proposition 1 above). The lengths of the legs in these triangles will be
obtained using the tangent analogues of the Chebyshev polynomials.

For each m ∈ N, define

Fm(x) = tan(m arctan x).

These are the tangent analogues of the Chebyshev polynomials of the first kind for
cosine. Let θ = arctan x ; then De Moivre’s formula yields

Fm(x) = sin mθ

cos mθ
= 1

i

(cos θ + i sin θ)m − (cos θ − i sin θ)m

(cos θ + i sin θ)m + (cos θ − i sin θ)m

= 1

i

(1 + i x)m − (1 − i x)m

(1 + i x)m + (1 − i x)m
= Im(1 + i x)m

Re(1 + i x)m
= pm(x)

qm(x)
,

where the last equality defines the polynomials pm(x) and qm(x) in Z[x]. Thus, each
Fm(x) is a rational function with integer coefficients.

Notice that pm(x) equals the alternating sum of the odd power terms in the binomial
expansion (1 + x)m , the first few being

p1(x) = x, p2(x) = 2x, p3(x) = 3x − x3, p4(x) = 4x − 4x3.

Plainly, if tan(kπ/n) exists (i.e., k �≡ n/2 mod n), then tan(kπ/n) is a root of Fn(x)

and of pn(x). In other words, the minimal polynomial of tan(kπ/n) may be obtained
by factoring pn(x) in Z[x] using MAGMA and then choosing the correct irreducible
factor (see [4] for another rigorous approach).

Here is an example. Let n = 10. Then

p10(x) = 10x9 − 120x7 + 252x5 − 120x3 + 10x

factors in Z[x] into

p10(x) = 2x(x4 − 10x2 + 5)(5x4 − 10x2 + 1).

Calculation shows that tan(π/10) �= 0 is not a root of x4 − 10x2 + 5; hence it must be
a root of ψ(x) = 5x4 − 10x2 + 1 (this is a rigorous argument!). Therefore

tan
( π

10

)
=

√
5 − 2

√
5

5
.

Recalling Figure 4, we may set a =
√

5 − 2
√

5, b = √
5, and, by the Pythagorean

theorem, c =
√

10 − 2
√

5.
Repeating this process for π/12, π/8, and π/5, we obtain the four triangles I–IV

described in Table 2.
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Table 2. Data for four right triangles I–IV, namely the radian measure α of an acute angle, the
minimal polynomial ψ(x) of tan α over Q, tan α in radical form, and the side lengths a, b, and c as
in Figure 4 above.

� α ψ(x) tan(α) a b c

I π/12 x2 − 4x + 1 2 − √
3 2 − √

3 1
√

8 − 4
√

3

II π/10 5x4 − 10x2 + 1
√(

5 − 2
√

5
)
/5

√
5 − 2

√
5

√
5

√
10 − 2

√
5

III π/8 x2 + 2x − 1
√

2 − 1
√

2 − 1 1
√

4 − 2
√

2

IV π/5 x4 − 10x2 + 5
√

5 − 2
√

5
√

5 − 2
√

5 1
√

6 − 2
√

5

Each triangle I–IV appears to contain at least one side whose length has degree 4
over Q. However, looks can be deceiving when it comes to radical expressions, as is
well known to anyone who has played with the cubic formula. In the present situation,
we have √

6 − 2
√

5 =
√(√

5 − 1
)2 = √

5 − 1.

This observation indicates that we will need tools to recognize squares and nonsquares
among quadratic irrationals. These tools are developed in the next section.

4. ALGEBRAIC TOOLS. Recall that a number field is a subfield of C whose di-
mension as a vector space over Q is finite. Being a subfield of C, each number field is
an integral domain. A quadratic number field K is a number field with [K : Q] = 2.
It follows that K = Q

(√
d

)
for some squarefree integer d /∈ {0, 1}. Plainly

Q
(√

d
) = Q

[√
d

] = {
r + s

√
d | r, s ∈ Q

}
(the first equality is a special case of a more general fact [11, §1.3]).

If K is a number field, then the ring of integers of K is by definition

OK = {
γ ∈ K | f (γ ) = 0 for some monic f ∈ Z[x]}.

Historically, it was nontrivial to arrive at this correct definition of OK (see [8, p. 38]).
Indeed, OK is a ring and Z ⊆ OK ⊂ K (see [11, §2.3]). For example, OQ = Z (the
so-called rational integers) and OQ(i) = Z[i] (the so-called Gaussian integers). Direct
verification [11, §3.1] shows that if K = Q

(√
d

)
is a quadratic number field where

d /∈ {0, 1} is a squarefree rational integer, then

OK =
{

Z
[√

d
]

if d �≡ 1 mod 4,

Z
[

1
2 + 1

2

√
d

]
if d ≡ 1 mod 4,

where

Z
[√

d
] = {

a + b
√

d | a, b ∈ Z
}

and

Z

[
1

2
+ 1

2

√
d

]
=

{
a + b

2
+ b

2

√
d

∣∣∣∣ a, b ∈ Z

}
.

The norm function N is an important tool for the study of quadratic number fields
as we now recall. Fix a squarefree integer d /∈ {0, 1} and let K = Q

(√
d

)
. Define

October 2010] GRADE SCHOOL TRIANGLES 679



conjugation on K , in analogy with complex conjugation, as follows. If μ = r + s
√

d ∈
K where r, s ∈ Q, then

μ = r − s
√

d ∈ K .

This conjugation is well defined (since each element of K is uniquely expressible as
r + s

√
d for r, s ∈ Q) and is multiplicative:

μν = μ ν for every μ, ν ∈ K .

Now, if μ = r + s
√

d ∈ K , where r, s ∈ Q, then define the norm of μ by

N (μ) = μμ = r 2 − s2d ∈ Q.

Multiplicativity of conjugation and commutativity of multiplication on K imply that
the norm is multiplicative:

N (μν) = N (μ)N (ν) for every μ, ν ∈ K .

In particular, the restriction of N to OK is multiplicative and, furthermore, takes ratio-
nal integer values:

N : OK → Z.

The latter fact is obvious if d �≡ 1 mod 4 and is easily verified directly when d ≡
1 mod 4. Thus, we obtain the following sufficient condition for the recognition of
nonsquares in OK .

Proposition 2. Let K be a quadratic number field and let μ ∈ OK . If N (μ) is not a
square in Z, then μ is not a square in OK .

The converse of Proposition 2 does not hold in general, as shown by simple ex-
amples such as −4 + 2

√
3 ∈ Z

[√
3

]
.

Next, we develop a sufficient condition for the recognition of squares in OK .

Question. Let R be a commutative ring. If α, β, γ ∈ R − {0R} and

α · β2 = γ 2,

then is α necessarily a square in R?

A straightforward exercise (left to the reader) shows that the question has an affir-
mative answer for each unique factorization domain R, in particular for the rational
integers Z. This property of Z is at the heart of the age-old question: does

√
2 lie in

Q? If so, then 2q2 = p2 for some nonzero rational integers p and q. The property now
implies that 2 is a square in Z, a contradiction. A similar argument shows that only the
square rational integers have square roots lying in Q.

The aforementioned property of the positive integers Z+ was known to Euclid.
Proposition 22 in book VIII of Euclid’s Elements [7, p. 379] states that if three numbers
be in continued proportion, and the first be a square, the third will also be a square.
That is, if a, b, c ∈ Z+, a : b : c, and a = d2 for some d ∈ Z+, then c = e2 for some
e ∈ Z+. The continued proportion a : b : c means a/b = b/c or ca = b2. Therefore,
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Euclid’s Proposition 22 is equivalent to: if c, d, b ∈ Z+ and cd2 = b2, then c = e2 for
some e ∈ Z+.

The above question has a negative answer for many rings. If R = Z�6Z, then
5 · 32 = 32, but 5 is not a square in R. For present purposes, a more relevant coun-
terexample is the integral domain R = Z[2i]; in R we have −1 · 22 = (2i)2, but −1 is
not a square in R. The problem is that Z[2i] is not integrally closed.

Recall that a ring R is integrally closed if each element of its field of fractions

F = {
α/β | α, β ∈ R and β �= 0R

}
that is integral over R (meaning the element is a root of a monic polynomial in R[x])
actually lies in R. It is not difficult to see that Q[i] is the field of fractions of Z[2i] and
i ∈ Q[i] is integral over Z[2i], but i /∈ Z[2i]. In fact, OQ[i] = Z[i] and so in a sense
Z[2i] is missing some integers, namely i . The next lemma (see [11, p. 106] for a proof)
states that this problem does not arise in rings of present interest.

Lemma 5. If K is a number field, then OK is integrally closed.

This yields the following sufficient condition for the recognition of squares in OK .

Proposition 3. Let K be a number field and R = OK . If α, β, γ ∈ R − {0R} and
α · β2 = γ 2, then α is a square in R.

Proof. If α, β, γ ∈ R − {0R} and α · β2 = γ 2, then x2 − α ∈ R[x] has γ /β as a root.
The previous lemma implies γ /β ∈ R and, thus, α = (γ /β)2 is a square in R.

We will make use of the following technical result.

Lemma 6. Let α = √
x + y

√
z, where x, y, z ∈ Z, y �= 0, and z > 1 is squarefree.

Then degQ α = 2 or degQ α = 4. Furthermore, degQ α = 2 if and only if x + y
√

z =(
a + b

√
z
)2

for some nonzero a, b ∈ Z.

Proof. Notice that α2 = x + y
√

z /∈ Q is a root of t2 − (2x)t + (x2 − y2z) ∈ Z[t],
and so degQ α2 = 2. The tower of fields

Q
2⊂ Q(α2)

d⊆ Q(α)

has d = 1 or d = 2 since α is a root of t2 − α2 ∈ Q(α2)[t]. As degQ α = 2d, the first
part of the lemma follows. Next

degQ α = 2 ⇐⇒ d = 1

⇐⇒ α ∈ Q
(
α2

)
⇐⇒ α = a + b

√
z

c

for some a, b, c ∈ Z with gcd(a, b, c) = 1 and c > 0. In this case

x + y
√

z = α2 =
(

a + b
√

z

c

)2

= a2 + b2z

c2
+ 2ab

c2

√
z
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and so

x = a2 + b2z

c2
and y = 2ab

c2

since
{
1,

√
z
}

is a linearly independent set over Q. Hence c2 | a2 + b2z and c2 | 2ab. If
p is a rational prime dividing c, then c2 | 2ab implies p | a or p | b, and c2 | a2 + b2z
implies p | a and p | b since z is squarefree. This contradicts gcd(a, b, c) = 1, so
c = 1. Finally, a, b �= 0 since otherwise degQ α2 = 1, a contradiction.

We recall one last technical tool (see [9] for a proof) before we proceed to the proof
proper of the main theorem.

Lemma 7. Let d1, d2, . . . , dn be distinct squarefree rational integers greater than one.
Then D = {

1,
√

d1,
√

d2, . . . ,
√

dn

}
is a linearly independent set over Q.

5. COMPLETION OF THE PROOF OF THE THEOREM. In this section, we
determine whether there exist triangles of the last four similarity types in T (see Propo-
sition 1 above) and with rational or quadratic irrational sides. We begin with the last
similarity type 36–54–90, which is represented by triangle IV (see Table 2 above) with
side lengths

a =
√

5 − 2
√

5,

b = 1,

c =
√

6 − 2
√

5 = √
5 − 1.

Let K = Q
(√

5
)

and recall from the previous section that

OK = Z

[
1

2
+ 1

2

√
5

]
⊃ Z

[√
5

]
.

Notice that N
(
5 − 2

√
5

) = 5 is not a square in Z, and so 5 − 2
√

5 is not a square
in OK by Proposition 2 above (hence, 5 − 2

√
5 is not a square in Z

[√
5

] ⊂ OK ).
Therefore, degQ a = 4 by Lemma 6 and triangle IV is ruled out.

It remains to rule out all triangles similar to triangle IV. Suppose, by way of contra-
diction, that a triangle, called IV′, is similar to triangle IV and satisfies the conditions

in the theorem. Thus, the side lengths of IV′ are λ
√

5 − 2
√

5, λ · 1, and λ
(√

5 − 1
)

for
some λ > 0. Therefore, λ itself is rational or quadratic irrational. Scaling further by a
positive rational integer, we may assume that

λ = x + y
√

d > 0, (1)

λ
(√

5 − 1
) = e + f

√
d1 > 0, and (2)

λ

√
5 − 2

√
5 = g + h

√
d2 > 0, (3)

where all variables (except possibly λ) are rational integers and d, d1, d2 > 1 are
all squarefree. By (1), x and y are not both zero. Further, y �= 0 since otherwise

λ
√

5 − 2
√

5 has degree 4 over Q instead of the required degree 1 or 2.
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The idea of the remainder of the proof is quite simple. We suspect that equa-
tions (1)–(3) imply that d = d2 = 5. But then squaring equation (3) yields

(
x + y

√
5

)2(
5 − 2

√
5

) = (
g + h

√
5

)2
.

By Proposition 3, the previous equation implies that 5 − 2
√

5 is a square in OK , which
we have already seen is false. Thus, triangle IV′ does not exist. It remains to show that
d = d2 = 5.

Claim 1. d = 5.

Proof. Multiplying out equation (2) yields

−x + x
√

5 + y
√

5d − y
√

d = e + f
√

d1. (4)

As y �= 0, if 5 � d, then equation (4) contradicts Lemma 7 on the linear independence
of square roots. Therefore, d = 5d0 where 5 � d0 (since d is squarefree) and

−x + x
√

5 + 5y
√

d0 − y
√

5d0 = e + f
√

d1. (5)

If d0 > 1, then equation (5) contradicts Lemma 7. Hence, d0 = 1 and d = 5.

Claim 2. x �= 0.

Proof. Otherwise y > 0 (since λ > 0) and

g + h
√

d2 = y
√

5

√
5 − 2

√
5 =

√
25y2 − 10y2

√
5.

As g + h
√

d2 has degree 1 or 2 over Q, Lemma 6 implies that 25y2 − 10y2
√

5 is a
square in Z

[√
5

]
. However, the norm of this element is 53 y4 which is not a square in

Z, contradicting Proposition 2.

Claim 3. d2 = 5.

Proof. Otherwise, square both sides of (3) and conclude, by Lemma 7, that the coef-
ficient −2(x2 + 5y2) + 10xy of

√
5 must equal zero. Setting this coefficient equal to

zero and solving the resulting quadratic in x we obtain

x = 5y ± y
√

5

2
.

This is a contradiction since x ∈ Z and y �= 0.

This completes the proof that no triangle similar to triangle IV has rational or
quadratic irrational sides. A virtually identical argument applies to triangles II and
III (for triangle II, start with the similar triangle obtained by scaling triangle II by

√
5).

We leave the details to the reader.
In the case of triangle I, the above argument begins to break down when one

attempts to prove x �= 0. Assuming x = 0, one concludes that, by Lemma 6,
3y2

(
8 − 4

√
3

)
is a square in Z

[√
3

]
. The analogous statements for triangles II–IV

were contradictions as shown by the norm. However, here the norm of the potential
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square equals 2432 y4 which is a square in Z. This is not fatal and one can prove by
elementary means that x �= 0. One then has λ = x + y

√
3 where x and y are nonzero

rational integers. The attempt to prove d2 = 3, however, is fatal. In an attempted proof
by contradiction, one assumes that d2 �= 3 and solves the quadratic in x that is the
coefficient of

√
3 (as above) and finds that x = y or x = 3y. Examining the case

x = y, one finds that λ = 1 + 1
√

3 scales triangle I to a triangle with side lengths
a′ = √

3 − 1, b′ = 1 + √
3, and c′ = 2

√
2. This yields the third similarity type in the

main theorem.

6. CONCLUDING REMARKS. Having proved the theorem, it is straightforward
to find all triangles satisfying the conditions in the theorem. Making use of Lemma 7,
the reader may verify the following. Each 45–45–90 triangle satisfying the conditions
in the theorem is obtained from the standard one with opposite side lengths

(
1, 1,

√
2

)
by: (i) scaling by

√
d, where d ≥ 1 is squarefree, and then scaling by an arbitrary

element in Q+, or (ii) scaling by x + y
√

2 > 0, where x, y �= 0 and gcd(x, y) = 1,
and then scaling by an arbitrary element in Q+. The same result holds for each 30–60–
90 triangle similar to the one with opposite side lengths

(
1,

√
3, 2

)
except that in (ii)

one must use x + y
√

3 > 0. Identifying triangles that differ by a scale factor in Q+,
we see that 45–45–90 and 30–60–90 triangles each have a countably infinite number
of equivalence classes of triangles satisfying the conditions in the theorem.

In contrast, one may verify that 15–75–90 triangles have exactly two such equiva-
lence classes with representatives the “standard” one with opposite side lengths

(√
3 −

1, 1 + √
3, 2

√
2

)
and the standard one scaled by

√
3.

The theorem above suggests many natural questions and we mention two. First,
what happens when one drops the requirement in the theorem that the triangles contain
a right angle? Using the law of cosines, Lemmas 2 and 3, and a computer algebra
system (such as MAGMA), the problem reduces to checking 200 similarity types.
Second, we focused on side lengths of degree at most 2 in relation to grade school
triangles. The argument above showing that there exist only a finite number of possible
similarity types also applies to right triangles with rational angles and side lengths of
degree at most d. Actually determining which of the similarity types work appears to
be much more difficult for general d > 2.
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Robert Burton (1577–1640) on the Diversion of Melancholy

“I would for these causes wish him that is melancholy, to use both humane and
divine authors, voluntarily to impose some taske upon himselfe, to divert his
melancholy thoughts: To study the art of memory, Cosmus Rosselius, Pet. Raven-
nas, Scenkelius detectus, or practice Brachygraphy, &. that will aske a great
deale of attention: or let him demonstrate a proposition in Euclide in his five last
bookes, extract a square root, or study Algebra. Then which as Clavius holds, in
all humane disciplines nothing can be more excellent and pleasant, so abstruse
and recondite, so bewitching, so miraculous, so ravishing, so easie withall and
full of delight, omnem humanum captum superare videtur.”

Robert Burton, The Anatomy of Melancholy, vol. 2,
T. C. Faulkner, N. K. Kiessling, and R. L. Blair, eds.,

Clarendon Press, Oxford, 1989, p. 92.

—Submitted by Robert Haas, Cleveland Heights, OH
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