University of Inda 193

Open Books

Francisco González Acuña.

Let W^{n-1} be a compact manifold with boundary and and let $h: W \to W$ be a homeomorphism which is the identity on ∂W .

In $W \times [0,1]$ identify (x,1) to (h(x),0) for $x \in W$ and identify (x,t) to (x,0) for $x \in \partial W, t \in [0,1]$.

The resulting space is a closed n-manifold $M^n = M(h)$ called an open book with monodromy h. If $\Psi \colon W \times [0,1] \to M^n$ is the identification map then $\Psi(\partial W \times \{0\})$ is the binding and $\Psi(W \times \{t\}), t \in [0,1]$ is a page.

If W is oriented, then $W \times [0,1]$ is canonically oriented and M(h) is oriented in such a way that Ψ has degree 1.

Example 1. If $h: S^1 \times [0,1] \to S^1 \times [0,1]$ is defined by $h(z,t) = (e^{2\pi i t} \cdot z, t)$ then $M(h) \approx S^3$.

Theorem 1 (Winkelnkemper). If M^n is 1-connected and n > 5, then M^n is an open book iff index $M^n = 0$. (index $M^n = 0$ by definition if n is not a multiple of 4).

Theorem 2 (Tamura(k > 2), A' Campo (k = 2)). If M^{2k+1} is (2k - 1)connected and $k \ge 2$, then M is an open book with S^{2k-1} as binding.

Theorem 3 ((Alexander)1923). Any orientable closed M³ is an open book.

If M^3 can be exhibited as an open book where the page has genus g and d boundary components we say that M^3 is a book of type (g,d). Our main result is:

Theorem 4. Let M^3 be an orientable closed 3-manifold. Then, for all but a finite number of pairs (g,d) with $g \ge 0, d > 0, M^3$ is a book of type (g,d). (In particular M^3 has a fibered link with a prescribed number of components and a fibered link of genus 0).

Corollary 1. Let M^3 be orientable closed connected and d a positive integer. Then there exists a codimension 1 foliation of M with precisely d compact leaves.

Plumbing Lemma. Let $W^{n-1} = W_0^{n-1} \cup W_1^{n-1}$ where W, W_0 and W_1 are manifolds with boundary. Suppose $W_0 \cap W_1 \approx D^{n-1}$ and that $W_i \cap \partial W_j$ is bicollared in W_i if $i \neq j$. Let $h_i : W \to W$ be a homeomorphism such that $h_i \mid \overline{W - W_i}$ is the identity (i = 0, 1). Then $M(h_0 \circ h_1) \approx M(h_0 \mid W_0) \# M(h_1 \mid W_1)$.

2

Proof: For i = 0, 1 and $x \in \partial W_i \cap \operatorname{int} W_{1-i}$ identify in $M(h_i \mid W_i)$ and in $M(h_0 \circ h_1)$ the image under the identification map of $\{x\} \times [\frac{i}{2}, \frac{i+1}{2}]$ to a point.

The quotient space M of $M(h_0 \circ h_1)$ is homeomorphic to $M(h_0 \circ h_1)$: a homeomorphism is defined by sending (x,t) in M to $\left(x, \frac{d(x,W_0 \cap \partial W_1)\alpha(t) + d(x,W_1 \cap \partial W_0)(1-\alpha(1-t))}{d(x,W_0 \cap \partial W_1) + d(x,W_1 \cap \partial W_0)}\right)$ in $M(h_0 \circ h_1)$ where d is a distance on W, α is a map from [0,1] to [0,1] linear on the subintervals $[0,\frac{1}{2}],[\frac{1}{2},1]$ and $\alpha(0) = \alpha(\frac{1}{2}) = 0, \alpha(1) = 1.$

Similarly the quotient space M_i of $M(h_i | W_i)$ is homeomorphic to $M(h_i | W_i)$.

Let $N_i = \Psi(W_i \times [0,1] - (W_i \cap \operatorname{int} W_{1-i}) \times (\frac{1-i}{2}, \frac{2-i}{2}))$ where $\Psi \colon W \times [0,1] \to M$ is the identification map. (See the schematic Figure 2)

Since $h_0h_1 = h_0$ on $W_0 - \text{int } W_1$ one sees that N_0 is homeomorphic to the complement, in M_0 , of the interior of the *n*-disk corresponding to $(W_0 \cap W_1) \times [\frac{1}{2}, 1]$.

Also, the complement in M_1 of the interior of the n-disk which corresponds

to $(W_0 \cap W_1) \times \left[0, \frac{1}{2}\right]$ is homeomorphic to N_1 . The homeomorphism is defined by mapping the point of M_1 which corresponds to (x,t), with $(x,t) \notin \operatorname{int}(W_0 \cap W_1) \times (0, \frac{1}{2})$, to $\Psi(h_0(x), t)$ if $t < \frac{1}{2}$ and to $\Psi(x, t)$ if $t \ge \frac{1}{2}$.

Now, suppose M_0^3 is a book of type (0,d), d > 1, page W_0 and monodromy h_0 . Take $M_1^3 = S^3$ with page an annulus W_1 and monodromy h_1 . (see Example 1). Let $W = W_0 \cup W_1$ as shown in Figure 3.

W has genus 1 and d-1 boundary components.

Extend h_i to a homeomorphism of W onto W in such a way that $h_i \mid W - W_i = \text{identity.}$

Then by the plumbing lemma $M(h_0 \circ h_1) \approx M_0^3 \# M_1^3 \approx M_0^3$ so that M_0^3 is a book of type (1, d-1).

Iterating this construction we get that, for $0 \le i < d, M_0^3$ is a book of type (i, d - i). If, instead, we construct W as shown in Figure 4 and apply the plumbing lemma we obtain that M_0^3 is a book of type (0, d + 1) and,

These observations show that if M^3 is a book of type (0,d) and $g+d' \ge d$ where $g \ge 0, d' > 0$, then M^3 is also a book of type (g,d').

Thus, to prove the theorem it suffices to show that every closed orientable 3-manifold is a book of type (0,d) for some d. But this can be proved using Lickorish's work in "Foliations of 3-manifolds" as follows.

Let $S^3 = \bigcup_{z \in S^1} W_z, W_z \approx D^2$ be the standard open book decomposition of S^3 :

Let $\varphi_i \colon S^1 \to S^3 (i = 1, \dots, n)$ be disjoint embeddings such that $\varphi_i(z) \in \operatorname{int} W_z \, \forall i \, \forall z \in S^1$. The link $\bigcup_{i=1}^n \varphi_i(S^1)$ is called a pure link (see Birman's book).

Lickorish proves: Every orientable closed M^3 can be obtained by Milnor-Wallace surgery on a pure link. That is,

$$M^3 = (S^3 - \bigcup_{i=1}^n \varphi_i(S^1 \times D^2)) \cup (D^2 \times S^1)_1 \cup \ldots \cup (D^2 \times S^1)_n \text{ with } \varphi_i(u, v) \sim (u, v) \in (\partial D^2 \times S^1)_i.$$

Here φ_i has been extended to a homeomorphim of $S^1 \times D^2$ into S^3 in such a way that $\varphi_i(\{z\} \times D^2) \subset \operatorname{int} W_z$.

Then, if $W'_z = W_z - \bigcup_{i=1}^n \varphi_i(\{z\} \times \operatorname{int} D^2)) \cup (\bigcup_{i=1}^n ([0,z] \times S^1)_i)$, where [0,z] is the segment from $0 \in D^2$ to $z \in \partial D^2 = S^1, \{W'_z\}$ are the (planar) pages of a book decomposition of M^3 .

Fig. 6

The fact that any orientable closed 3-manifold M^3 has a fibered knot, i.e

is a book of type (g,1) for some g, can also be proved "a la Alexander" as follows.

By Alexander (details can be found in Montesinos' "Una nota a un teorema de Alexander") $M^3 \approx M(l,\omega)$ where $M(l,\omega)$ is the covering of S^3 branched over a link l associated to a transitive representation ω : $\pi_1(S^3 - l,\infty) \to S_q$ sending meridians to transpositions.

l is pictured as a closed r-braid in Fig. 7 where the meridians m_1, \ldots, m_r are also shown.

Since in $\pi_1(S^3 - l, \infty)$, $[m_1 m_2 \dots m_r] = [a]$ where a is the axis, which we think of as a loop based at ∞ , $\omega([m_1])\omega([m_2])\cdots\omega([m_r]) = \omega([a])$. Let d

be the number of cycles (including 1-cycles) of $\omega([a])$. If d>1 then there is a j such that $\omega([m_j])=(uv)$ where u and v belong to different cycles of $\omega([a])$ since $[m_1],\ldots,[m_r]$ generate $\pi_1(S^3-l)$ and ω is transitive. Let $l_1=(l-s)\cup s_1$ where s is a small arc in the j-th string of l and s_1 is an arc which goes around the axis a as indicated in Fig. 7b (a Markov move). The arcs s,s_1 are such that $s\cup s_1$ is the boundary of a polyhedral 2-disk whose intersection with l is s and which does not intersect the (images of) the meridians m_1,\ldots,m_r . Then l_1 is a closed (r+1)-braid which is equivalent to l by a homeomorphism h which is the identity on m_1,\ldots,m_r . Hence, if we define ω_1 as the composition $\pi_1(S^3-l_1,\infty)\xrightarrow{h_*}\pi_1(S^3-l,\infty)\xrightarrow{\omega} S_q$, then $M(l_1,\omega_1)\approx M(l,\omega)\approx M^3,\omega_1([m_i])=\omega([m_i])$ $i=1,\ldots,r$ and $\omega_1([m_{r+1}]=\omega([m_j])$ where m_{r+1} is the meridian shown in Fig. 7b. But now $\omega_1([a])=\omega_1([m_1])\cdots\omega_1([m_r])\omega_1([m_{r+1}])=\omega([a])\cdot (uv)$ has d-1 cycles.

If we repeat the process and make d-1 suitable Markov mores we finally obtain a closed braid l' and a representation ω' : $\pi_1(S^3-l',\infty) \to S_q$ such that $\omega'([a])$ has only one cycle and $M(l',\omega') \approx M^3$. Then, if $p: M(l',\omega') \to S^3$ is the branched covering map and $\{W_z\}$ is the standard book decomposition of S^3 having a as binding and disks W_z transversal to l' as pages we have that $\{p^{-1}(W_z)\}$ is a book decomposition of $M(l',\omega')$ with connected binding $p^{-1}(a)$.

A corollary pointed out by Jonathan Simon is

Theorem 5 (Bing). A closed connected 3-manifold M is S^3 if every simple closed curve in M is contained in a polyhedral 3-disk.

Proof: The hypothesis implies that M is 1-connected. Let k be a fibered knot in M which, by hypothesis is contained in the interior of a disk D^3 .

Since M is 1-connected $\overline{M-D^3}$ is a homotopy 3-disk contained in M-k. But M-k is irreducible since it fibers over S^1 . It follows that $\overline{M-D^3}$ is a 3-disk and $M \approx S^3$.

Question. Can one give a proof "a la Alexander" of the fact that every orientable closed M^3 is a book of type (0,d)?

If so one would have another proof of Lickorish's theorem (every orientable closed M^3 can be obtained by Milnor-Wallace surgery on a link l in S^3 ; furthermore l can be taken to be a pure link).

Conjecture 1. Every nonorientable closed 3-manifold M^3 is an open book.

If the conjecture is true then, using the plumbing Lemma, M^3 has a fibered link with a prescribed number $d \ge 1$ of components and a codimension 1 foliation with precisely d compact leaves.

If W is a 2-disk with n holes and h: W o W is a homeomorphism which is the identity on ∂W then $\pi_1(M(h))$ has a presentation $(x_1, \ldots, x_n : r_1, \ldots, r_n)$ where $x_i = [s_i a_i s_i^{-1}] \in \pi_1(W) = F_n, r_i = [h(s_i) \cdot s_i^{-1}]$

 s_i and a_i being the paths and loops indicated in Figure 8

One can see that the r_i satisfy

$$(A) \prod_{i=1}^{n} r_i x_i r_i^{-1} = \prod_{i=1}^{n} x_i \text{ in } F$$

Conversely if $\mathcal{A} = (x_1, \dots, x_n : r_1, \dots, r_n)$ is such that (A) is satisfied (we call such an \mathcal{A} an Artin n-presentation) then it follows from [Artin 1925] that there is a (unique up to isotopy rel ∂W) homeomorphism $h: W \to W$ of a disk with n holes onto itself such that $h \mid \partial W = \text{identity}$ and $[h(s_i) \cdot s_i^{-1}] = r_i \quad i = 1, \dots, n$ so that, if we write $M(h) = M_{\mathcal{A}}, \pi_1(M_{\mathcal{A}}) = |\mathcal{A}|$ (the group presented by \mathcal{A}).

This yields the following algebraic characterization of 3-manifold groups.

Theorem 6. G is the fundamental group of a closed orientable M^3 iff it has an Artin n-presentation for some n.

Another albebraic characterization can be found in Birman [Bull. Australian...]. The uniqueness of Heegard splittings of S^3 , proved by Waldhaussen, has allowed the formulation of the P.C. (Poincaré Conjecture) in purely algebraic terms. (See [Birman], [Traeub], [Jaco]). Using again Waldhaussen's Theorem and open books with planar pages one can give another algebraic equivalent of P.C.

Definition 1. Let $S_n = |x_1, y_1, \dots, x_n, y_n|$: $\prod_{i=1}^n x_i = \prod_{i=1}^n y_i^{-1} x_i y_i$ | and let $N \subset S_n$ be the normal closure of y_1, \dots, y_n in S_n .

If \mathcal{A} is an Artin *n*-presentation define the automorphism $\varphi_{\mathcal{A}} \colon \mathcal{S}_n \to \mathcal{S}_n$ by $\varphi_{\mathcal{A}}(x_i) = r_i x_i r_i^{-1}, \varphi_{\mathcal{A}}(y_i) = r_i y_i \quad i = 1, \ldots, n.$

Two Artin n-presentations $\mathcal{A}, \mathcal{A}'$ are equivalent $(\mathcal{A} \sim \mathcal{A}')$ if there exist automorphisms E_1, E_2 of S_n such that $E_1 \circ \varphi_{\mathcal{A}} = \varphi_{\mathcal{A}'} \circ E_2$ and $E_i(N) = N$ i = 1, 2.

One can see that $\mathcal{A} \sim \mathcal{A}' \Rightarrow M_{\mathcal{A}} \approx M_{\mathcal{A}'} \Rightarrow |\mathcal{A}| \approx |\mathcal{A}'|$. P.C. is then equivalent to

Conjecture 2. If A is an Artin n-presentation such that |A| = 1 then $\mathcal{A} \sim \mathcal{T}$ where:

$$\mathfrak{T}=(x_1,\ldots,x_n\colon x_1,\ldots,x_n).$$

This conjecture is true for $n \leq 2$.

One can also show that P.C. is true in the class of books of type (1,1).

We now give a formula for the μ invariant of a closed 3-manifold obtained by Milnor-Wallace surgery on a link. This can be applied to compute the μ invariant of an open book with planar pages since they are the manifolds obtained by Milnor-Wallace surgery on a pure link.

Suppose you have an oriented link $L = L_1 \cup ... \cup L_n$ in S^3 with integer coefficients, i.e. an integer l_i is assigned to the component L_i of L.

Let M^3 be obtained by surgery on L, i.e. $M^3 = \chi(\varphi_1, \ldots, \varphi_n)$ where $\varphi_i \colon S^1 \times D^2 \to S^3$ is an embedding sending $S^1 \times 0$ to L_i and $S^1 \times 1$ $(1 \in \partial D^2)$ to a curve having linking number l_i with L_i (i = 1, ..., n).

Let
$$Q = (l_{ij})$$
 be the $n \times n$ matrix such that
$$l_{ij} = \begin{cases} lk(L_i, L_j) & \text{if } i \neq j \\ l_i & \text{if } i = j \end{cases}$$
 where lk denotes linking number.

where lk denotes linking number.

(Q defines the quadratic form of a 1-connected 4-manifold whose boundary is M^3).

Assume M^3 is a \mathbb{Z}_2 -homology sphere, i.e. \mathbb{Q}_2 the reduction of \mathbb{Q} mod 2, is

M(M3) = 16 (010) - 2 light = 1)

d= 2(-1)