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1. Introduction

Our primary goal is a proof of the following theorem, which emphatically affirms
a conjecture of Siebenmann [4, p. 1805] addressed in an earlier paper by the first
and third authors of this paper [3].

Main Theorem. There exist one-ended, open 4-manifolds M and N such that
the end-sum of M and N yields uncountably many manifolds with distinct proper
homotopy types.

In addition to definitions, background, and proofs, we carefully develop the tools
needed to distinguish between the aforementioned manifolds. Foremost among these
is the end-cohomology algebra of an end-sum. We also discuss some intriguing open
questions.

End-sum is a technique for combining a pair of noncompact n-manifolds in a
manner that preserves the essential properties of the summands. Sometimes called
connected sum at infinity in literature, end-sum is the natural analog of both the
classical connected sum of a pair of n-manifolds and the boundary connected sum of
a pair of n-manifolds with boundaries. The earliest intentional use of the end-sum
operation appears to have been by Gompf [13] in his work on smooth structures
on R4. Other applications to the study of exotic R4’s can be found in Bennett [1]
and Calcut and Gompf [2]. End-sum has also been useful in studying contractible
n-manifolds not homeomorphic to Rn. This is due to the fact that, unlike with
classical connected sums, the end-sum of a pair of contractible manifolds is again
contractible. For a sampling of such applications in dimension 3, see Myers [26] and
Tinsley and Wright [32]; in dimension 4, see Calcut and Gompf [2] and Sparks [31];
and in dimensions n ≥ 4, see Calcut, King, and Siebenmann [4]. For “incidental”
applications of end-sum to the study of contractible open manifolds of dimension
n ≥ 4, see Curtis and Kwun [6] and Davis [7]. These incidental (unintentional)
applications are due to the fact that the interior of a boundary connected sum may
also be viewed as an end-sum of the corresponding interiors.

Each variety of connected sum involves arbitrary choices that lead to questions
of well-definedness. For example, to perform a classical connected sum in the smooth
category,a one begins with a pair of smooth, connected, oriented n-manifolds, then
chooses smooth n-balls B1 ⊂ IntM and B2 ⊂ IntN and an orientation reversing
diffeomorphism f : ∂B1 → ∂B2. From there, one declares M#N to be the oriented
manifold (M − IntB1)∪f (N − IntB2). Provided M and N are connected, standard
but nontrivial tools from differential topology can be used to verify that, up to
diffeomorphism, M#N does not depend upon the choices made. See [21, p. 90] for
details. Note that well-definedness fails if one omits the connectedness hypothesis
or ignores orientations.

aSimilar definitions, conventions, and arguments allow for analogous connected sum operations
in the piecewise linear and topological categories. For the sake of simplicity and focus, we will
restrict our attention to the smooth category.
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For smooth, oriented n-manifolds M and N with non-empty boundaries, a
boundary connected sum is performed by choosing smooth (n− 1)-balls B1 ⊂ ∂M

and B2 ⊂ ∂N , and an orientation reversing diffeomorphism f : B1 → B2. Pro-
vided ∂M and ∂N are connected, an argument similar to the one used for ordinary
connected sums shows that the adjunction space M ∪f N (suitably smoothed and
oriented) is well defined up to diffeomorphism; it is sometimes denoted M � N .
Again, see [21, p. 97] for details.

An end-sum of a pair of smooth, oriented, noncompact n-manifolds M and
N begins with the choice of properly embedded rays r ⊂ IntM and s ⊂ IntN
and regular neighborhoods νr and νs of those rays. The regular neighborhoods are
diffeomorphic to closed upper half-space Rn

+, so each has boundary diffeomorphic
to Rn−1. Choose an orientation reversing diffeomorphism f : ∂νr → ∂νs to obtain
the end-sum defined by (M − Int νr) ∪f (N − Int νs); sometimes this end-sum is
denoted informally as M�N . By an argument resembling those used above, neither
the choice of thickenings of r and s (that is, the regular neighborhoods νr and νs)
nor the diffeomorphism f affect the diffeomorphism type of M�N . However, the
choices of rays r and s are another matter. For example, if M has multiple ends,
then rays in M tending to different ends of M can yield inequivalent end-sums,
even in the simple n = 2 case. For that reason, we focus on the most elusive case
where M and N are one-ended. The existence of knotted rays in 3-manifolds poses
problems unique to that dimension. Indeed, Myers has exhibited an uncountable
collection of topologically distinct end-sums where both summands are R3. So,
quickly we arrive at the appropriate question: For smooth, oriented, one-ended, open
n-manifolds M and N where n ≥ 4, is end-sum well defined up to diffeomorphism?
In many cases the answer is affirmative. For example, R4�R4 is always R4 [14].
More generally, the end-sum of n-manifolds with Mittag-Leffler ends and n ≥ 4
depends only on the chosen ends [2]. Nevertheless, Siebenmann conjectured that
counterexamples should exist in general [4, p. 1805]. His suspicion was confirmed
by Calcut and Haggerty [3] where, for numerous pairs of smooth, one-ended, open
4-manifolds, it was shown that end-sums can produce non-diffeomorphic (in fact,
non-proper homotopy equivalent) manifolds. Here, we will refine the techniques
employed there to significantly extend that work.

As in the earlier work, the primary tool used to distinguish between various
noncompact n-manifolds will be their end-cohomology algebras — more specifically
it is the ring structure of that algebra that holds the key. This is an essential point
since every end-sum herein of a given pair of one-ended manifolds has homology and
cohomology groups (absolute and “end”) in each dimension that are isomorphic to
those of any other end-sum of the same two manifolds. To allow for differences in
these end-cohomology algebras, it will be necessary to work with manifolds that
have substantial cohomology at infinity. That leads us naturally to the well studied,
but subtle, area of infinitely generated abelian groups. For the benefit of the reader
with limited background in that area, we have included an appendix with key
definitions and proofs of the fundamental facts used in this paper. Capturing this
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subtle algebra in the form of a manifold requires some care — most significantly, a
precise description of the end-cohomology algebra of an end-sum in terms of the end-
cohomology algebras of the summands with input from so-called ray-fundamental
classes determined by the chosen rays. We provide a careful development of this
topic, as suggested to us by Henry King.

Given past applications of end-sum, the following open question deserves
attention.

Question 1.1. For contractible, open n-manifolds M and N of dimension n ≥ 4,
is M�N well-defined up to diffeomorphism or up to homeomorphism?

Note that, by Poincaré duality “at the end” (see [12, p. 361]), the end-
cohomology algebra of a contractible, open n-manifold is isomorphic to the ordinary
cohomology algebra of Sn−1. So, the methods used in this paper appear to be of
no use in attacking this problem.

Using ladders based on exotic spheres, Calcut and Gompf [2, Example 3.4(a)]
gave pairs of smooth, one-ended, open n-manifolds for some n ≥ 7 whose end-sums
are piecewise linearly homeomorphic but not diffeomorphic. It is unknown whether
examples exist in dimension n = 4 whose end-sums are homeomorphic but not
diffeomorphic. A key open question is the following (see [3, p. 3282; 2, p. 1303]).

Question 1.2. Can the (oriented) end-sums of a smooth, oriented, one-ended, open
4-manifold M with a fixed oriented exotic R4 be distinct up to diffeomorphism?

If such examples exist, then it appears that distinguishing them will be diffi-
cult [2, Proposition 5.3].

The outline of this paper is as follows. Section 2 lays out some conventions,
defines end-sum, and discusses end-cohomology. Section 3 defines some manifolds
(stringers, surgered stringers, and ladders) useful for our purposes and computes
their end-cohomology algebras. Section 4 classifies stringers, surgered stringers, and
ladder manifolds based on closed surfaces. Section 5 defines ray-fundamental classes
and presents a proof of an unpublished result of Henry King that computes the
end-cohomology algebra of a binary end-sum. Section 6 computes ray-fundamental
classes in surgered stringers and ladders. Section 7 proves the Main Theorem.
Appendix A presents some relevant results from the theory of infinitely generated
abelian groups.

2. Conventions, End-Sum, and End-Cohomology

2.1. Conventions

Throughout this paper, topological spaces are metrizable, separable, and locally
compact. In particular, each space has a compact exhaustion (see Sec. 2.3). Our
focus is on one-ended examples, but many of the foundational results established
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Fig. 1. Neatly embedded ray r ⊂ M and a smooth closed tubular neighborhood τr ⊂ M (left),
and ray r ⊂ Int M and a smooth closed regular neighborhood νr ⊂ Int M (right).

here apply to manifolds with arbitrarily many ends. Unless explicitly stated other-
wise, manifolds are smooth, connected, and oriented. We follow the orientation con-
ventions of Guillemin and Pollack [16, Chap. 3]. In particular, the boundary ∂M of
a manifold M is oriented by the outward normal first convention. Let IntM denote
the manifold interior of M . A manifold without boundary is closed if it is compact
and is open if it is noncompact. A map of spaces is proper provided the inverse image
of each compact set is compact. A ray is a smooth proper embedding of the real
half-line [0,∞). The submanifold [0,∞) ⊂ R is standardly oriented [16, Chap. 3].
By M ≈ N we indicate diffeomorphic manifolds (not necessarily preserving orien-
tation).

We will consider rays in manifold interiors as well as neatly embedded rays.
Recall that a manifold A embedded in a manifold B is said to be neatly embedded
provided A is a closed subspace of B, ∂A = A ∩ ∂B, and A meets ∂B transversely
(see [18, p. 30; 21, pp. 27–31, 62]). The closed subspace condition is automatically
satisfied by any proper embedding. Now, let r ⊂ M be a neatly embedded ray.
We let τr ⊂ M denote a smooth closed tubular neighborhood of r in M as in
Fig. 1 (left). By definition, a closed tubular neighborhood is a restriction of an open
tubular neighborhood (see [18, pp. 109–118; 21, pp. 46–53]); we will always assume
that closed tubular neighborhoods are restrictions of neat tubular neighborhoods. In
particular, the disk bundle τr over r meets ∂M in exactly the disk over the endpoint
0. Closed tubular neighborhoods of r in M are unique up to ambient isotopy fixing
r. Next, let r ⊂ IntM be a ray. We let νr ⊂ IntM denote a smooth closed regular
neighborhood of r in IntM as in Fig. 1 (right). Existence and ambient uniqueness of
smooth closed tubular neighborhoods and collars imply the same results for smooth
closed regular neighborhoods [4, pp. 1815].

2.2. End-sum

We now define the end-sum of two noncompact manifolds. An end-sum pair (M, r)
consists of a smooth, oriented, connected, noncompact manifold M together with a
ray r ⊂ IntM . We allow M to have arbitrarily many ends. Consider two end-sum
pairs (M, r) and (N, s) where M and N have the same dimension m ≥ 2. The end-
sum of (M, r) and (N, s), which we denote by (M, r) � (N, s), is defined as follows.
Choose smooth closed regular neighborhoods νr ⊂ IntM and νs ⊂ IntN of r and
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Fig. 2. End-sum of two manifold/ray pairs.

s, respectively. Delete the interiors of these regular neighborhoods and glue the
resulting manifolds M − Int νr and N − Int νs along their boundaries ∂νr ≈ Rm−1

and ∂νs ≈ Rm−1 by an orientation reversing diffeomorphism as in Fig. 2.

Remark 2.1. The manifold (M, r) � (N, s) is smooth and oriented, and its diffeo-
morphism type is independent of the choices of the regular neighborhoods and the
glueing diffeomorphism [3, Sec. 2]. While this binary end-sum is sufficient for our
purposes, we mention that it is a special case of a more general operation that also
applies to piecewise linear and topological manifolds and allows countably many
summands [4]. Alternatively, one may view the end-sum operation as the addition
of a so-called 1-handle at infinity [2].

2.3. End-cohomology

Throughout, R denotes a commutative, unital ring. We use the singular theory for
ordinary (co)homology. We suppress the coefficient ring when that ring is Z.

We will distinguish noncompact manifolds by the isomorphism types of their
(graded) end-cohomology algebras. Just as cohomology is a homotopy invariant of
spaces, end-cohomology is a proper homotopy invariant of spaces. We adopt the
direct limit approach to end-cohomology. An alternative may be found in several
places including Conner [5], Raymond [27], Massey [23, Chap. 10], and Geoghe-
gan [12, Chap. 12]. The alternative approach provides some advantages in terms
of establishing the foundations of end-cohomology and comparing it to other coho-
mology theories. On the other hand, we find the direct limit approach invaluable
for carrying out concrete calculations. For the benefit of the reader — and since
the arguments are straightforward and satisfying — we take the time to develop
the basics of end-cohomology straight from the direct limit definition.b

bFor background on proper homotopy, see [15, pp. 58–59; 20, Chap. 3]. For background on direct
systems and direct limits, see [9, Chap. 8; 23, Appendix; 28, Chap. 6.9].
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Fix a topological space X . Define the poset (K,≤) where K is the set of compact
subsets of X and K ≤ K ′ means K ⊆ K ′. We have a direct system of graded R-
algebras H∗(X − K;R) where K ∈ K. The morphisms of this direct system are
restrictions induced by inclusions. Define H∗

e (X ;R), the end-cohomology algebra,
to be the direct limit of this direct system. For the relative version, let (X,A) be a
closed pair, namely a space X together with a closed subspace A ⊆ X . Regard X

as the closed pair (X, ∅). Consider the direct system H∗(X −K,A−K;R) where
K ∈ K and the morphisms are restrictions. Define H∗

e (X,A;R) to be the direct
limit of this direct system. Similarly, reduced end-cohomology H̃∗

e (X,A;R) is the
direct limit of the direct system H̃∗(X −K,A−K;R).

We employ a standard explicit model of the direct limit [9, p. 222] where an
element of H∗

e (X,A;R) is represented by an element of H∗(X − K,A − K;R)
for some compact K. Two representatives α ∈ H∗(X − K,A − K;R) and α′ ∈
H∗(X − K ′, A − K ′;R) are equivalent if they have the same restriction in some
H∗(X −K ′′, A−K ′′;R), where K,K ′ ⊆ K ′′.

Recall that a compact exhaustion of X is a nested sequence K1 ⊆ K2 ⊆ · · ·
of compact subsets of X whose union equals X and where Kj ⊆ K◦

j+1 for each j.
Here, K◦

j+1 denotes the topological interior of Kj+1 as a subspace of X . By our
hypotheses on spaces, each space has a compact exhaustion (see [19, p. 75]). Let
{Kj} be any compact exhaustion of X . As {Kj} is cofinal in K, we may compute
H∗

e (X,A;R) using the direct system indexed by Z>0. Namely, there is a canonical
isomorphism (see [9, p. 224])

H∗
e (X,A;R) ∼= lim−→H∗(X −Kj, A−Kj;R). (2.1)

We claim that we may delete instead the topological interior K◦
j of Kj to obtain

the canonical isomorphism

H∗
e (X,A;R) ∼= lim−→H∗(X −K◦

j , A−K◦
j ;R). (2.2)

To prove the claim, we show that the right-hand sides of (2.1) and (2.2) are canon-
ically isomorphic. Let Gj and G′

j denote the jth terms in these direct systems. The
inclusions K◦

1 ⊆ K1 ⊆ K◦
2 ⊆ K2 ⊆ · · · induce the obvious maps between these

direct systems and give the commutative diagram

(2.3)

We get induced maps φ : lim−→Gj → lim−→G′
j and ψ : lim−→G′

j → lim−→Gj between direct
limits [9, p. 223]. It is a simple exercise to prove that ψ ◦ φ and φ ◦ ψ are the
respective identity maps (use Eilenberg and Steenrod [9, pp. 220–223]). This proves
the claim. Passing to a subsequence in either (2.1) or (2.2) canonically preserves
the isomorphism type of the direct limit since these isomorphisms are independent
of the choice of compact exhaustion (see also [9, p. 224]).
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A proper map of closed pairs is a map of closed pairs f : (X,A) → (Y,B)
such that f : X → Y is proper; it follows that the restriction f | : A → B is
proper. For example, if (X,A) is a closed pair, then the inclusions (A, ∅) ↪→ (X, ∅)
and (X, ∅) ↪→ (X,A) are proper maps of closed pairs. Each such map f induces a
morphism

f∗
e : H∗

e (Y,B;R) → H∗
e (X,A;R).

Indeed, let {Lj} be a compact exhaustion of Y . Observe that
{
Kj := f−1(Lj)

}
is

a compact exhaustion of X . In particular, Kj ⊆ K◦
j+1. We have the commutative

diagram

(2.4)

The rows are direct systems and the vertical maps are induced by the restrictions

f |j : (X −Kj, A−Kj) → (Y − Lj , B − Lj).

These maps induce the morphism f∗
e on the direct limits which are identified with

the respective end-cohomology algebras by (2.1). The same argument applies to
reduced cohomology. It is straightforward to verify that id∗

e = id and (g ◦ f)∗e =
f∗

e ◦ g∗e .

Lemma 2.2. Let f, g : (X,A) → (Y,B) be proper maps of closed pairs. If f and g
are properly homotopic, then f∗

e = g∗e .

Proof. By hypothesis, there is a proper homotopy F : X×I → Y such that F0 = f ,
F1 = g, and Ft(A) ⊆ B for all t ∈ I. Let pr1 : X × I → X be projection. Let {Lj}
be a compact exhaustion of Y . So, F−1(Lj) ⊆ X× I and Kj := pr1(F−1(Lj)) ⊆ X

are compact. As projection maps are open, {Kj} is a compact exhaustion of X . For
each j, we have the restriction

F |j : (X −Kj) × I → Y − Lj

which is a homotopy between the restrictions

f |j : X −Kj → Y − Lj ,

g|j : X −Kj → Y − Lj .

Hence, f |∗j = g|∗j in (2.4). Therefore, the induced morphisms on direct limits are
equal as desired.

Corollary 2.3. If the closed pairs (X,A) and (Y,B) are proper homotopy equiva-
lent by the proper maps f : (X,A) → (Y,B) and g : (Y,B) → (X,A), then f∗

e and
g∗e are graded R-algebra isomorphisms.
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Proof. By hypothesis, g◦f is proper homotopy equivalent to idX by a proper homo-
topy sending A into B at all times, and similarly for f ◦ g and idY . By Lemma 2.2
and the preceding observations, f∗

e ◦ g∗e = id and g∗e ◦ f∗
e = id.

Lemma 2.4. For each closed pair (X,A) there is the induced long exact sequence

· · · → Hk
e (X,A;R) → Hk

e (X ;R) → Hk
e (A;R) → Hk+1

e (X,A;R) → · · · .

Proof. Let {Kj} be a compact exhaustion of X . As A is closed in X , {A ∩Kj}
is a compact exhaustion of A. Consider the biinfinite commutative diagram whose
jth column is the long exact sequence for the pair (X −Kj , A−Kj). The rows in
this diagram are the various direct systems Hk(A − Kj;R), Hk(X −Kj ;R), and
Hk(X −Kj, A−Kj;R). The maps in this diagram between successive rows induce
maps of their direct limits. The resulting sequence of direct limits is exact since
the direct limit is an exact functor in the category of R-modules (see [9, p. 225] or
[23, p. 389]).

A closed triple (X,A,B) is a space X together with subspaces B ⊆ A ⊆ X each
closed in X . With the long exact sequences for the closed pairs (A,B), (X,B), and
(X,A) in hand, a well-known diagram chase [9, p. 24] proves the following.

Corollary 2.5. For each closed triple (X,A,B) there is the induced long exact
sequence

· · · → Hk
e (X,A;R) → Hk

e (X,B;R) → Hk
e (A,B;R) → Hk+1

e (X,A;R) → · · · .

Remark 2.6. It is crucial for end-cohomology that one consider closed pairs and
triples. Otherwise, one does not obtain induced maps for the usual long exact
sequences, and the direct system H∗(A∩Kj ;R) (where {Kj} is a compact exhaus-
tion of X) need not compute Hk

e (A;R).

An excisive triad (X ;A,B) is a space X together with two closed subspaces
A ⊆ X and B ⊆ X such that X = A◦ ∪ B◦ where A◦ and B◦ are the topological
interiors of A and B in X , respectively.c

Lemma 2.7. Let (X ;A,B) be an excisive triad and set C = A ∩ B. Then the
inclusion φ : (A,C) → (X,B) induces the excision isomorphism

φ∗ : H∗
e (X,B;R) → H∗

e (A,C;R).

Proof. Let {Kj} be a compact exhaustion of X . So, {A ∩Kj}, {B ∩Kj}, and
{C ∩Kj} are compact exhaustions of A, B, and C, respectively. We have the two

cNote the subtle notational distinction between a triple and a triad.
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direct systems

H∗ (A−Kj, C −Kj;R) ,

H∗ (X −Kj, B −Kj;R) ,
(2.5)

where the morphisms in both systems are induced by inclusions. For each j, we
have the inclusion

φj : (A−Kj , C −Kj) → (X −Kj , B −Kj) .

Observe thatX−Kj = (A−Kj)◦∪(B−Kj)◦ where (A−Kj)◦ denotes the topological
interior of A−Kj as a subspace of X −Kj and similarly for (B−Kj)◦. Therefore,
each φ∗j is an excision isomorphism on ordinary R-cohomology. By [9, p. 223],
these isomorphisms induce an isomorphism between the direct limits of the direct
systems (2.5). Two applications of (2.1) now complete the proof.

The following corollary is useful (compare Eilenberg and Steenrod [9, p. 32] and
May [24, pp. 145]).

Corollary 2.8. Let (X ;A,B) be an excisive triad and set C = A ∩B. Denote the
inclusion maps by iA : (A,C) ↪→ (X,C) and iB : (B,C) ↪→ (X,C). Then the map

h : H∗
e (X,C;R) → H∗

e (A,C;R) ⊕H∗
e (B,C;R)

defined by h(α) = (i∗A(α), i∗B(α)) is a graded R-algebra isomorphism.

Recall that the product is coordinatewise in the direct sum of algebras.

Proof. The commutative diagram of inclusions

(2.6)

induces the commutative diagram

(2.7)

The vertical maps are excision isomorphisms (Lemma 2.7). Hence, the two lower
maps are injective and the two upper maps are surjective. The two diagonals are
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Fig. 3. Manifold M with a compact exhaustion {Kj} and a (closed) neighborhood system of
infinity {Mj}.

exact being portions of long exact sequences for triples (Corollary 2.5). These prop-
erties of (2.7) readily imply that h is both injective and surjective.

Remark 2.9. Let r ⊂ IntM be a ray and νr ⊂ IntM be a smooth closed regular
neighborhood of r. Define M̂ := M − Int νr. We claim that the inclusion φ :
(M̂, ∂νr) ↪→ (M, νr) induces an isomorphism φ∗e on end-cohomology. However, the
corresponding triad (M ; M̂, νr) is not excisive since M is not the union of the
topological interiors M̂◦ and νr◦ of M̂ and νr in M , respectively. This nuisance is
easily fixed using a closed collar. Let Z ≈ ∂νr × [0, 1] be a closed collar on ∂νr in
νr. Notice that φ equals the composition of the inclusions

(M̂, ∂νr)
i
↪→ (M̂ ∪ Z,Z)

j
↪→ (M, νr).

Both induced morphisms i∗e and j∗e are isomorphisms. The former holds since i

is properly homotopic to the identity map on (M̂, ∂νr) using the obvious proper
strong deformation retraction that collapses the closed collar Z to ∂νr. The latter
holds since j∗e is the excision isomorphism from the excisive triad (M ; M̂ ∪ Z, νr).
Hence, φ∗e is an isomorphism and the claim is proved. Excision is used in Sec. 5 and
Corollary 2.8 is used in the proof of Theorem 5.4. In each of these places, we leave
the standard collaring fix to the reader.

For a general noncompact space or manifold, it appears to be difficult to com-
pute the end-cohomology algebra in a comprehensible manner. So, we deliberately
construct manifolds (stringers, surgered stringers, and ladders) with tractable alge-
bras that fit into the following framework.

Let M be a connected space with a compact exhaustion {Kj} where j ∈ Z≥0.
Assume K0 = ∅. Define Mj := M −K◦

j where K◦
j is the topological interior of Kj
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as a subspace of M . So, each Mj is closed in M and

M = M0 ⊇M1 ⊇M2 ⊇ · · ·

is a (closed) neighborhood system of infinity as in Fig. 3. By (2.2), we have
H∗

e (M ;R) ∼= lim−→H∗(Mj;R).
For each j, let ij : Mj+1 ↪→ Mj be the inclusion. Suppose that for each j ∈ Z≥0

there is a retraction rj : Mj → Mj+1 (in Fig. 3, the retraction rj folds up the
bottom of Mj). The composition rj ◦ ij equals the identity on Mj+1. So, i∗j ◦ r∗j
equals the identity on H∗(Mj+1;R) and each i∗j is surjective. By [9, p. 222], each
of the canonical morphisms

qi : H∗(Mi;R) → H∗
e (M ;R)

is surjective with kernel Qi equal to the submodule of elements that are eventually
sent to 0 in the direct system H∗(Mj;R). Here, qi(α) := �α�. Hence, for each
i ∈ Z≥0 we have H∗(Mi, R)/Qi

∼= H∗
e (M ;R). This discussion applies to relative

and reduced end-cohomology as well.

3. Stringers, Surgered Stringers, and Ladders

In this section, we define some manifolds and present their end-cohomology alge-
bras. These will be used in our proof of the Main Theorem.

Let X be a closed, connected, oriented n-manifold with n ≥ 2. The stringer
based on X is [0,∞) × X with the product orientation [16, Chap. 3]. Let Xt =
{t} × X , so the oriented boundary of the stringer is −X0. The end-cohomology
algebra of the stringer is

H̃∗
e ([0,∞) ×X ;R) ∼= H̃∗(X ;R).

The surgered stringer S (X) based on X is obtained from the stringer on X by
performing countably many oriented 0-surgeries as in Fig. 4.

We refer to the glued-in copies of D1×Sn as rungs. The space X0∨J in Fig. 4 is
the wedge of X0 and J , where J is the wedge of a ray, n-spheres Sj , and 1-spheres
Tj . It is a strong deformation retract of S (X) by an argument similar to the one
provided in [3, Lemma 3.2].

The surgered stringer S (X) is oriented using the orientation of the stringer
[0,∞) ×X . Let S[j,k] denote the points of S (X) with heights in the interval [j, k]
as in Fig. 5. We orient S[j,k] as a codimension-zero submanifold of S (X).

We orient each n-sphere Sj so that the oriented boundary of the cobordism
S[j,j+1/2] is Xj+1/2−Xj +Sj . Thus, the oriented boundary of S[j+1/2,j+1] is Xj+1−
Xj+1/2 − Sj.

Let sj denote the fundamental class [Sj ] of Sj , and let tj denote the fundamental
class [Tj] of Tj. So, the nonzero reduced integer homology groups of J are H̃n(J) ∼=
Z[s] and H̃1(J) ∼= Z[t]. Define σj and τ j to be the dual fundamental classes [Sj ]

∗
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Fig. 4. Surgered stringer S (X) and a strong deformation retract X0 ∨ J of S (X).

Fig. 5. Cobordisms S[j,j+1], S[j,j+1/2], and S[j+1/2,j+1] in S (X).

and [Tj]
∗ so that the nonzero reduced cohomology groups of J are

H̃n(J ;R) ∼= HomZ (Z[s], R) ∼= R[[σ]],

H̃1(J ;R) ∼= HomZ (Z[t], R) ∼= R[[τ ]].

All cup products in H̃∗(J ;R) vanish.
An argument similar, but simpler, to the one provided in [3, Sec. 3] now shows

that the end-cohomology algebra of S (X) is

H̃k
e (S (X) ;R) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hn(X ;R) ⊕R[[σ]]/R[σ] if k = n,

Hk(X ;R) ⊕ 0 if 2 ≤ k ≤ n− 1,

H1(X ;R) ⊕R[[τ ]]/R[τ ] if k = 1,

0 otherwise.

The cup product is coordinatewise in the direct sum; it is that of X in the first
coordinate and vanishes in the second coordinate.

Let X and Y be closed, connected, oriented n-manifolds with n ≥ 2. The ladder
manifold L (X,Y ) based on X and Y is obtained from the stringers based on X

and on Y by performing countably many oriented 0-surgeries as in Fig. 6 (Ladder
manifolds were the primary objects of study in [3]. See that paper for more details).
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Fig. 6. Ladder manifold L (X, Y ) and a strong deformation retract X0 ∨ J ∨ Y0.

Again, the glued-in copies of D1 × Sn are called rungs. The ladder manifold is
oriented using the orientations of the stringers based on X and Y . The oriented
boundary of L (X,Y ) is −X0 − Y0. Let L[j,k] denote the points of L (X,Y ) with
heights in the interval [j, k]. We orient L[j,k] as a codimension-zero submanifold of
L (X,Y ). The cobordism L[j,j+1] is the union of two connected cobordisms with
shared boundary component Sj . We orient each Sj so that the oriented boundaries
of these cobordisms are Xj+1 −Xj + Sj and Yj+1 − Yj − Sj. The ladder manifold
L (X,Y ) also contains 1-spheres Tj as shown in Fig. 6, and it strong deformation
retracts to the wedge X0 ∨ J ∨ Y0 as explained in [3, p. 3287].

Let sj denote the fundamental class [Sj ] of Sj , and let tj denote the fundamental
class [Tj ] of Tj . Again, the nonzero reduced integer homology groups of J are
H̃n(J) ∼= Z[s] and H̃1(J) ∼= Z[t]. Define σj and τ j to be the dual fundamental
classes [Sj ]

∗ and [Tj]
∗ so that nonzero reduced cohomology groups of J are

H̃n(J ;R) ∼= HomZ (Z[s], R) ∼= R[[σ]],

H̃1(J ;R) ∼= HomZ (Z[t], R) ∼= R[[τ ]].

All cup products in H̃∗(J ;R) vanish. By [3, Sec. 3], the end-cohomology algebra of
the ladder manifold L (X,Y ) is

H̃k
e (L (X,Y ) ;R) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(Hn(X ;R) ⊕R[[σ]] ⊕Hn(Y ;R))/K if k = n,

Hk(X ;R) ⊕ 0 ⊕Hk(Y ;R) if 2 ≤ k ≤ n− 1,

H1(X ;R) ⊕R[[τ ]]/R[τ ] ⊕H1(Y ;R) if k = 1,
0 otherwise,

where K :=
{
(
∑
βi, β,−

∑
βi) |β =

∑
βiσ

i ∈ R[σ]
} ∼= R[σ]. The cup product is

coordinatewise in the direct sum; it is that of X in the first coordinate, that of Y
in the third coordinate, and vanishes in the second coordinate.

Remark 3.1. As X and Y are closed, connected, and oriented n-manifolds, we
have that

H̃n
e (L (X,Y ) ;R) ∼= (R ⊕R[[σ]] ⊕R)/K.
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Fig. 7. Classical connected sum N of the stringer based on X with countably many (n+1)-spheres.

When R = Z, we show in Appendix A that the dual module of this Z-module
is isomorphic to Z. On the other hand, for any ring R the canonical R-module
homomorphism

R⊕R → (R⊕R[[σ]] ⊕R)/K

defined by (r, s) �→ [[(r, 0, s)]] is injective and, hence, anR-module isomorphism onto
its image (R ⊕ 0 ⊕ R)/K. When R is a field, (R ⊕ 0 ⊕ R)/K is a two-dimensional
R-vector space. When R = Z, (R⊕ 0⊕R)/K is a rank two free Z-module. For any
ring R, each cup product with value of degree n must lie in (R⊕ 0 ⊕R)/K.

For many base manifolds, surgered stringers and ladder manifolds have noniso-
morphic end-cohomology algebras. The proof of Theorem 4.2 shows various tech-
niques for distinguishing these algebras. However, in some exceptional cases these
manifolds have diffeomorphic ends.

Proposition 3.2. Let X be a closed, connected, oriented n-manifold where n ≥ 1.
Let M = L (X,Sn)∪∂D

n+1 be the ladder manifold with the Sn boundary component
capped by an (n+1)-disk. Then M is diffeomorphic to S (X). In particular, L (X,Sn)
and S (X) have diffeomorphic ends and, hence, isomorphic end-cohomology algebras.

Proof. Let N be the (classical) connected sum of the stringer [0,∞) × X and
countably many (n+ 1)-spheres as in Fig. 7.

Note that N ≈ [0,∞) ×X . Performing countably many oriented 0-surgeries on
N yields M , and performing them on [0,∞) ×X yields S (X).

Remark 3.3. Given a manifold Y (not necessarily connected) and two proper
disjoint rays in Y , ladder surgery is the operation where one performs countably
many oriented 0-surgeries on Y using the 0-spheres given by the corresponding
integer points on the rays. Properly homotopic rays yield diffeomorphic manifolds
(see [2, Definition 3.1 and Corollary 4.13]).
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Corollary 3.4. For any ring R, there is an R-module isomorphism

f : R⊕R[[x]]/R[x] → (R⊕R[[x]] ⊕R)/K,(
r,

� ∞∑
i=0

cix
i

�)
�→

�(
r − c0,

∞∑
i=1

(ci − ci−1)xi, c0

)�
.

Proof. The topological proof of Proposition 3.2 determines the function f . With f
in hand, it is straightforward to verify (purely algebraically) that f is a well-defined
R-module isomorphism. The inverse function f−1 is given by�(

r,
∞∑

i=0

aix
i, s

)�
�→
⎛⎝r + s,

�� ∞∑
i=0

(s+
i∑

j=0

aj)xi

�	⎞⎠ .

In particular, f maps (1, �0�) �→ �(1, 0, 0)� and
(
1,



1

1−x

�) �→ �(0, 0, 1)�.
Consider the Z-module G = Z ⊕ Z[[x]]/Z[x]. The submodule 0 ⊕ Z[[x]]/Z[x] is

determined algebraically in an isomorphism invariant manner as the elements of G
sent to 0 by every element of the dual Z-module of G (see Corollary A.2). However,
the submodule Z ⊕ 0 cannot be determined algebraically as shown by the next
corollary.

Corollary 3.5. Consider the Z-module G = Z⊕Z[[x]]/Z[x]. The elements (1, �0�)
and

(
1,



1

1−x

�)
generate a rank two free Z-submodule of G. Further, there is a

Z-module automorphism of G that interchanges these two elements. In particular,
0 ⊕ Z[[x]]/Z[x] has unequal complements in G.

We emphasize that G does not split off Z ⊕ Z as a direct summand by Corol-
lary A.2.

Proof. Let f : G → (Z ⊕ Z[[x]] ⊕ Z)/K be the isomorphism from Corollary 3.4.
The first conclusion follows by Remark 3.1. Consider an involution of the ladder
manifold L (Sn, Sn) (for example, a product of two reflections) that interchanges the
stringers, reverses the orientation of each sphere Sj , and induces the involution ρ of
(Z⊕Z[[x]]⊕Z)/K given by �(r, γ, s)� �→ �(s,−γ, r)�. The automorphism ψ : G→ G

given by ψ = f−1 ◦ ρ ◦ f interchanges the desired elements.

In our proof of the Main Theorem, we will need to algebraically detect the sub-
module Z⊕ 0 of G. The previous corollary shows that this will require more of the
end-cohomology algebra than just the top degree module. We will use base mani-
foldsX with nontrivial cup products in order to algebraically detect this submodule.

4. Stringers, Surgered Stringers, and Ladders Based on Surfaces

This section classifies all stringers, surgered stringers, and ladder manifolds based on
closed surfaces. It demonstrates various methods for distinguishing end-cohomology
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algebras up to isomorphism. In interesting cases, the ring structure plays the decid-
ing role. This classification of ladders based on surfaces answers a question raised by
Calcut and Haggerty [3, p. 3295]. In addition, its proof is good preparation for the
more complicated situations that arise in subsequent sections. Let Σg denote the
closed, connected, and oriented surface of genus g ∈ Z≥0. Throughout this section,
we use integer coefficients.

The end-cohomology algebra of the stringer [0,∞) × Σg is

H̃k
e ([0,∞) × Σg) ∼= H̃k(Σg) ∼=

⎧⎪⎨⎪⎩
Z if k = 2,

Z2g if k = 1,

0 otherwise.

The cup product pairing H1(Σg) ×H1(Σg) → Z is nonsingular and is given by

⊕
g

[
0 1

−1 0

]
.

The end-cohomology algebra of the surgered stringer S (Σg) is

H̃k
e (S (Σg)) ∼=

⎧⎪⎨⎪⎩
Z ⊕ Z[[σ]]/Z[σ] if k = 2,

Z2g ⊕ Z[[τ ]]/Z[τ ] if k = 1,

0 otherwise.

The cup product is coordinatewise in the direct sum, vanishes in the second coor-
dinate, and is that of the cohomology ring of Σg in the first coordinate.

Given g1, g2 ∈ Z≥0, the end-cohomology algebra of the ladder manifold
L (Σg1 ,Σg2) is

H̃k
e (L (Σg1 ,Σg2)) ∼=

⎧⎪⎨⎪⎩
(Z ⊕ Z[[σ]] ⊕ Z)/K if k = 2,

Z2g1 ⊕ Z[[τ ]]/Z[τ ] ⊕ Z2g2 if k = 1,

0 otherwise,

where K = {(∑ βi, β,−
∑
βi)|β =

∑
βiσ

i ∈ Z[σ]} ∼= Z[σ]. The cup product is
coordinatewise in the direct sum and vanishes in the middle coordinate. Define the
matrices

C =

[
0 �(1, 0, 0)��−(1, 0, 0)� 0

]
, D =

[
0 �(0, 0, 1)��−(0, 0, 1)� 0

]
,

where �α� is the class of α in (Z ⊕ Z[[σ]] ⊕ Z)/K. For degree one elements, the
cup product in the first coordinate is given by

⊕
g1
C, and in the third coordinate

by
⊕

g2
D.

Of course, all of these manifolds may be capped with compact 3-manifolds
(handlebodies, for example) to eliminate boundary and obtain open, one-ended
3-manifolds. However, compact caps will not alter the isomorphism types of their



June 9, 2022 16:11 WSPC/243-JTA 2150014

478 J. S. Calcut, C. R. Guilbault & P. V. Haggerty

graded end-cohomology algebras (which is our focus). So, we choose to work with
the non-capped manifolds. We will use the following basic fact.

Lemma 4.1. Let F be a free Z-module of finite rank. Let G and H be submodules
of F . Then rank (G ∩H) ≥ rank (G) + rank (H) − rank (F ).

Proof. The hypotheses imply that G, H , and G + H are free Z-modules of rank
at most rank (F ) [8, p. 460]. We have the exact sequence of free Z-modules

0 → G ∩H → G⊕H → G+H → 0,

where the second map is g �→ (g,−g) and the third map is (g, h) �→ g+h. Recall two
facts: (i) if E is a free Z-module, then rank (E) = dimQ (E ⊗Z Q) [8, pp. 373, 471]
and (ii) tensoring with Q is an exact functor (since Q is a flat Z-module [8, p. 401]).
It follows that

rank (G) + rank (H) = rank (G ∩H) + rank (G+H) ≤ rank (G ∩H) + rank (F )

as desired.

Now, we will classify up to isomorphism the algebras listed for the three types
of manifolds: stringers, surgered stringers, and ladder manifolds based on surfaces.
The classification of these manifolds up to various types of equivalence will then
readily follow. Plainly, L (X,Y ) ≈ L (Y,X) for any manifolds X and Y .

Theorem 4.2. Two of the algebras listed are isomorphic if and only if their corre-
sponding manifolds have the same type and are based on surfaces of equal genus, with
the exception: for each g ∈ Z≥0 the algebras for S (Σg) , L (Σg,Σ0) , and L (Σ0,Σg)
are isomorphic. In particular, the algebras for L (Σg1 ,Σg2) and L (Σg3 ,Σg4) are
isomorphic if and only if {g1, g2} = {g3, g4}.

Proof. For stringers based on surfaces with unequal genus, the algebras are distin-
guished by the ranks of H̃1

e . The algebras for a stringer and a surgered stringer or a
ladder manifold are distinguished by the cardinalities of H̃1

e . Corollary A.2 implies
that the algebras for surgered stringers based on surfaces with unequal genus are
distinguished by the ranks of the duals of H̃1

e .
For each g ∈ Z≥0, the manifolds S (Σg) and L (Σg,Σ0) ≈ L (Σ0,Σg) have dif-

feomorphic ends by Proposition 3.2. So, their algebras are isomorphic. In all other
cases, the algebras for S (Σg) and L (Σg1 ,Σg2) are not isomorphic. If g2 = 0 and
g1 �= g (or g1 = 0 and g2 �= g), then use the ranks of the duals of H̃1

e . If g1 �= 0
and g2 �= 0, then use the ranks of the (degree two) subgroups generated by all
cup products of degree one elements. For S (Σg) this rank is zero or one, and for
L (Σg1 ,Σg2) it is two (see Remark 3.1).
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It remains to classify the algebras for ladder manifolds based on surfaces. Sup-
pose the following is an isomorphism:

f : H̃∗
e (L (Σg1 ,Σg2)) → H̃∗

e (L (Σg3 ,Σg4)).

Corollary A.2 implies that the ranks of the duals of H̃1
e are 2g1 +2g2 and 2g3 +2g4,

respectively. So, g1+g2 = g3+g4. Suppose, by way of contradiction, that {g1, g2} �=
{g3, g4}. Then g1 + g2 = g3 + g4 implies that some gi is strictly greater than the
other three. Without loss of generality, we have

g1 > g3 ≥ g4 > g2 ≥ 0.

We will reach a contradiction using the ring structures. First, we eliminate the
Z[[τ ]]/Z[τ ] summands in an isomorphism invariant manner. Let J denote the set
of elements in H̃1

e (L (Σg1 ,Σg2)) that are sent to 0 by every element in the dual of
H̃1

e (L (Σg1 ,Σg2)). Note that J is a subgroup of H̃1
e (L (Σg1 ,Σg2)) and, in fact, is

an ideal in H̃∗
e (L (Σg1 ,Σg2)). Similarly, we define the ideal J ′ in H̃∗

e (L (Σg2 ,Σg3)).
Evidently, f(J) = J ′ and so we obtain an induced isomorphism of the quotient
algebras where we mod out by J and J ′, respectively. Corollary A.2 implies that
J = 0 ⊕ Z[[τ ]]/Z[τ ] ⊕ 0 (and similarly for J ′). Therefore, we have an isomorphism
f : A→ B of the algebras

A =

⎧⎪⎨⎪⎩
(Z ⊕ Z[[σ]] ⊕ Z)/K if k = 2,

Z2g1 ⊕ 0 ⊕ Z2g2 if k = 1,

0 otherwise,

B =

⎧⎪⎨⎪⎩
(Z ⊕ Z[[σ]] ⊕ Z)/K if k = 2,

Z2g3 ⊕ 0 ⊕ Z2g4 if k = 1,

0 otherwise.

Let V = Z2g1 ⊕ 0 ⊕ 0, a rank 2g1 and degree one submodule of A. Recalling
Remark 3.1, cup products of elements of V generate (Z ⊕ 0 ⊕ 0) + K, a rank one
and degree two submodule of A. We will show that cup products of elements of
f(V ) generate a rank two and degree two submodule of B. This contradiction will
complete the proof.

Note the following facts. For each element 0 �= α ∈ V , there exists α′ ∈ V such
that α ∪ α′ �= 0 (since the degree one cup product pairing for Σg1 is nonsingular).
As f is an isomorphism, the previous fact holds for f(V ) as well. If γ ∈ Z2g3 ⊕0⊕0
and δ has degree one, then γ ∪ δ ∈ (Z ⊕ 0 ⊕ 0) +K. Similarly, if γ ∈ 0 ⊕ 0 ⊕ Z2g4

and δ has degree one, then γ ∪ δ ∈ (0 ⊕ 0 ⊕ Z) +K. The last two facts hold since
the cup product is coordinatewise.

Recalling that g1 + g2 = g3 + g4 and g1 > g3 ≥ g4 > g2 ≥ 0, Lemma 4.1 implies
that there exist elements

0 �= α ∈ f(V ) ∩ (Z2g3 ⊕ 0 ⊕ 0),

0 �= β ∈ f(V ) ∩ (0 ⊕ 0 ⊕ ∩Z2g4).

By the previous paragraph, there exist α′, β′ ∈ f(V ) such that

0 �= α ∪ α′ ∈ (Z ⊕ 0 ⊕ 0) +K,

0 �= β ∪ β′ ∈ (0 ⊕ 0 ⊕ Z) +K.
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By Remark 3.1, (Z⊕0⊕Z)+K is free of rank two. So, these two nonzero cup products
generate a rank two submodule of degree two. This contradiction completes the
proof.

Corollary 4.3. Ladder manifolds L (Σg1 ,Σg2) and L (Σg3 ,Σg4) based on sur-
faces of genera g1, g2, g3, g4 ∈ Z≥0 are proper homotopy equivalent if and only if
{g1, g2} = {g3, g4}. Hence, the same classification holds up to homeomorphism and
up to diffeomorphism.

5. End-Cohomology Algebra of Binary End-Sum

We present a proof of an unpublished result of Henry King. It computes the end-
cohomology algebra of a binary end-sum in terms of the algebras of the two sum-
mands together with certain ray-fundamental classes determined by the rays used
to perform the end-sum.

First, recall the analog for classical connected sum. Consider two closed, con-
nected, oriented n-manifolds X and Y . The reduced cohomology ring H̃∗ (X#Y )
is isomorphic to the quotient of the sum H̃∗ (X) ⊕ H̃∗ (Y ) by the principal ideal
generated by

(
[X ]∗ ,− [Y ]∗

)
where [X ]∗ ∈ Hn (X) and [Y ]∗ ∈ Hn (Y ) are the

cohomology fundamental classes dual to the respective homology (orientation) fun-
damental classes. The cup product is coordinatewise in the sum. For the unreduced
ring H∗ (X#Y ), let P be the subring of H∗ (X)⊕H∗ (Y ) consisting of all elements
of positive degree and only those of degree zero of the form (r, r) for r ∈ Z. The
desired ring is the quotient of P by the principal ideal generated by

(
[X ]∗ ,− [Y ]∗

)
.

One may prove these well-known facts by an argument structurally the same as
our proof of Theorem 5.4. For end-sum and end-cohomology, the cohomology fun-
damental classes will be replaced by ray-fundamental classes that we now define.

Let M be a smooth, connected, oriented, noncompact manifold of dimension
n + 1 ≥ 2 with compact (possibly empty) boundary. Let r ⊂ IntM be a ray, and
let νr ⊂ IntM be a smooth closed regular neighborhood of r in IntM oriented
as a codimension-zero submanifold of M . Orient the hyperplane ∂νr ≈ Rn as the
boundary of νr. We will define nonzero cohomology classes

[M, r]∗e ∈ Hn
e (M, νr;R),

[r]∗e ∈ H̃n
e (M ;R)

called (respectively) the relative and absolute ray-fundamental classes determined
by the ray r. Our notation is chosen since, as will emerge, these elements are
intimately related to classical fundamental classes of compact manifolds.

Recall that a Morse function h : M → R is exhaustive provided h is proper and
the image of h is bounded below.

Lemma 5.1. There exists an exhaustive Morse function h : M → R such that :
(i) h|r is projection; (ii) h|νr has just one critical point, namely a global minimum
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Fig. 8. Manifold Mn+1 where the Morse function h is depicted as height. The (n − 1)-sphere
∂ bZj = ∂Bj is depicted as two dots.

in ∂νr; (iii) h−1([t,∞)) ∩ (νr, ∂νr) ≈ [t,∞) × (Dn, Sn−1) for each t ≥ 0; and (iv)
each j ∈ Z≥0 is a regular value of h.

Proof. By Whitney’s embedding theorem, we may assume M ⊂ R2n+3 is a sub-
manifold that is embedded as a closed subspace. As 2n+3 > 3, we may assume, by
an ambient isotopy of R2n+3, that r is straight in R2n+3. Next, ambiently untwist
νr while fixing r. Define h(x) := ‖x− p‖2 + c for an appropriate point p ∈ R2n+3

and c ∈ R [25, p. 36].

Let h : M → R be a Morse function given by Lemma 5.1. For each j ∈ Z≥0,
define Mj := h−1([j,∞)) and Kj := h−1((−∞, j]), both oriented as codimension-
zero submanifolds of M (see Fig. 8). The Kj provide a compact exhaustion of M .
For all sufficiently large j, the boundary of M (compact by hypothesis) is contained
in the interior of Kj; without loss of generality, we assume this holds for all j ∈ Z≥0

(shrink r toward infinity if necessary). So, for all j ∈ Z≥0, h−1(j) = Kj ∩Mj is a
finite disjoint union of closed, connected n-manifolds. Let Zj be the component of
h−1(j) that meets νr, and let Ẑj := Zj − Int νr, both oriented as codimension-zero
submanifolds of ∂Kj . The (n − 1)-sphere ∂Ẑj is given the boundary orientation.
Define Bj := ∂νr ∩Kj ≈ Dn oriented as a codimension-zero submanifold of ∂νr.
Observe that ∂Ẑj = ∂Bj as oriented (n− 1)-spheres.

For each j ∈ Z≥0, we define the followingd (see Fig. 9):

M̂j := Mj − Int νr,

Fj := νr ∩Mj ≈ [j,∞) ×Dn,

F̂j := ∂νr ∩Mj ≈ [j,∞) × Sn−1,

Δj := νr ∩ Zj ≈ Dn.

dNotational mnemonic: intuitively bX is a “nicely punctured” copy of X.
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Fig. 9. Manifold Mj and some relevant submanifolds.

The fundamental class [∂Ẑj] is our preferred generator of Hn−1(F̂j). By Uni-
versal Coefficients, its dual [∂Ẑj]∗ is our preferred generator of

HomZ

(
Hn−1

(
F̂j

)
, R
) ∼= H̃n−1(F̂j ;R) ∼= R,

where the latter isomorphism sends our preferred generator to 1 ∈ R. In the direct
system H̃n−1(F̂j ;R), j ∈ Z≥0, each morphism is an isomorphism carrying one
preferred generator to another. Therefore, the direct limit

H̃n−1
e (∂νr;R) ∼= lim−→ H̃n−1(F̂j ;R) ∼= R

has a preferred generator [∂Ẑj]∗e that is represented by each [∂Ẑj]∗. In the proof of
Theorem 5.4, we use γM to denote [∂Ẑj]∗e.

The inclusion ιj : (Ẑj , ∂Ẑj) → (M̂j , F̂j) induces the following diagram, where
the rows are the long exact sequences for pairs:

(5.1)

The diagram is commutative by naturality of the coboundary map. As δ′j and the
left ι∗j are isomorphisms, δj is injective. We have the diagram

(5.2)

where φj is the excision isomorphism, ψj is the isomorphism from the long exact
sequence for the pair, and [M, r]∗j and [r]∗j are defined by the diagram. Consider the
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commutative diagram D whose jth row, j ∈ Z≥0, equals (5.2). The four vertical
maps in D from row j to row j+1 are inclusion induced. Passing to the direct limit
in D yields

(5.3)

where δM is injective, M̂ := M − Int νr, φM is the excision isomorphism, and ψM

is the isomorphism from the long exact sequence for the pair. The relative and
absolute ray-fundamental classes [M, r]∗e ∈ Hn

e (M, νr;R) and [r]∗e ∈ H̃n
e (M ;R) are

defined by (5.3).

Remark 5.2. (1) Let De be the diagram D augmented by the direct limit row (5.3)
together with the canonical maps in each column from the terms in the direct
system to the direct limit. The diagram De is commutative and shows immedi-
ately that each [M, r]∗j and [r]∗j represent (respectively) [M, r]∗e and [r]∗e. This
observation holds without any additional assumptions on D (such as surjectivity
of the vertical maps in the last column).

(2) The ray-fundamental classes are well defined, up to isomorphism, independent
of the choice of regular neighborhood νr by uniqueness of such neighborhoods.
They are also independent of the Morse function h satisfying Lemma 5.1. To
see this, let h′ be another such Morse function and distinguish corresponding
submanifolds of M by primes. As our Morse functions are exhaustive, each Mj

contains M ′
k for all sufficiently large k, and conversely. It follows that

H∗
e (M ;R) ∼= lim−→H∗(Mj ;R) ∼= lim−→H∗(M ′

j ;R)

and the latter of these isomorphisms carries the absolute ray-fundamental
classes to one another. A similar argument applies to the relative case.

(3) If r ⊂ M is neatly embedded, then we define the ray-fundamental classes
[M, r]∗e and [r]∗e as follows. As in Fig. 10 (left), let τr ⊂M be a smooth closed
tubular neighborhood of r in M (see Sec. 2 for our conventions on tubular
neighborhoods). Let C be the boundary component of M containing ∂r. Let

Fig. 10. Manifold M containing a neatly embedded ray r and a smooth closed tubular neighborhood

τr (left), and M ′ = M ∪ (closed collar) (right).
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M ′ equalM union a closed collar on C. The closed collar contains an (n+1)-disk
B such that B ∪ τr is a smooth closed regular neighborhood νr of r contained
in the interior of M ′ as in Fig. 10 (right). Evidently

H∗
e (M ′, νr;R) ∼= H∗

e (M, τr;R),

H∗
e (M ′;R) ∼= H∗

e (M ;R).

We define the ray-fundamental classes [M, r]∗e and [r]∗e for r ⊂ M to be the
images under these isomorphisms of the ray-fundamental classes for r ⊂M ′.

(4) The existence of the nonzero absolute ray-fundamental class [r]∗e implies that
if M is a smooth, oriented, connected, noncompact manifold of dimension n+
1 ≥ 2 with compact boundary, then H̃∗

e (M ;R) is nonzero. In particular, R
injects into Hn

e (M ;R). For such a manifold M , Hn
e (M ;R) may indeed be the

only nonzero cohomology group in H̃∗
e (M ;R). Consider the basic example of

Euclidean space

H̃∗
e (Rn+1;R) ∼= H̃∗(Sn;R) ∼= Hn(Sn;R) ∼= R.

If M has noncompact boundary, then H̃∗
e (M ;R) may vanish. Consider the basic

example of closed upper half-space Rn+1
+ which is proper homotopy equivalent

to a ray

H̃∗
e (Rn+1

+ ;R) ∼= H̃∗
e ([0,∞);R) ∼= 0.

Example 5.3. We will compute the absolute ray-fundamental class determined
by a neat straight ray in a stringer. Fix a smooth, closed, connected, oriented n-
manifold Z where n ≥ 1. Let Δ ⊂ Z be a smoothly embedded n-disk, and let
z0 ∈ IntΔ. So, r = [0,∞) × {z0} is a neat straight ray in the stringer [0,∞) × Z

with smooth closed tubular neighborhood F = [0,∞)×Δ. We let Mj = [j,∞)×Z

and reuse the notation from Fig. 9 and thereafter.
We have the following diagram in integer homology:

(5.4)

Each of these groups is a copy of Z. We claim that the preferred generators map as
shown. It is well known that ∂∗ is an isomorphism here. Seemingly less well known
is the more explicit fact that ∂∗

([
Ẑ, ∂Ẑ

])
=
[
∂Ẑ

]
for fundamental classes and the

outward normal first orientation convention; a proof appears in Kreck [22, Theo-
rem 8.1]. A moment of reflection reveals that the second and third isomorphisms
in (5.4) send the preferred generators to the same generator, denoted [Z,Δ], of
Hn (Z,Δ) as claimed.
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The Universal Coefficients Theorem now yields the following since all relevant
Ext groups vanish:

(5.5)

Diagram (5.5) is canonically isomorphic to row j = 0 in (5.2) by the obvious strong
deformation retractions. The latter diagram is canonically isomorphic to the direct
limit diagram (5.3) since every vertical map in D is an isomorphism. Making the
canonical identifications

Hn
e ([0,∞) × Z;R) ∼= Hn ([0,∞) × Z;R) ∼= Hn (Z;R) ∼= R

with the last given by [Z]∗ �→ 1, we have that [r]∗e = 1 ∈ R. This completes our
example.

Let (M, r) and (N, s) be end-sum pairs (see § 2.2) where M and N have the
same dimension n + 1 ≥ 2 and have compact (possibly empty) boundaries. Let
νr ⊂ IntM and νs ⊂ IntN be smooth closed regular neighborhoods of r and s,
respectively. Let H ⊂ (M, r) � (N, s) denote the image of ∂νr (which also equals
the image of ∂νs). Let u ⊂ H be an unknotted ray, and let νu be a smooth closed
regular neighborhood of u in the interior of S := (M, r) � (N, s).

Theorem 5.4 (H. King). There are isomorphisms of graded R-algebras

H∗
e (S, νu;R) ∼= (H∗

e (M, νr;R) ⊕H∗
e (N, νs;R))/

〈(
[M, r]∗e ,− [N, s]∗e

)〉
,

H̃∗
e (S;R) ∼= (H̃∗

e (M ;R) ⊕ H̃∗
e (N ;R))/

〈(
[r]∗e ,− [s]∗e

)〉
,

where
〈(

[M, r]∗e ,− [N, s]∗e
)〉

and
〈(

[r]∗e ,− [s]∗e
)〉

are homogeneous principal ideals of
degree n.

Proof. Recall that S is obtained from the disjoint union of M̂ := M − Int νr
and N̂ := N − Int νs by identifying ∂νr and ∂νs using an orientation reversing
diffeomorphism. We have inclusions

iM :
(
M̂, ∂νr

)
↪→ (S,H),

iN :
(
N̂ , ∂νs

)
↪→ (S,H).

We orient H so that iM | : ∂νr → H is an orientation preserving diffeomorphism;
it follows that iN | : ∂νs → H is an orientation reversing diffeomorphism. Let
ω ∈ Hn−1

e (H ;R) ∼= R be the preferred generator for this orientation. Hence, the
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following hold for our preferred generators:

(5.6)

The long exact sequences for the pairs give isomorphisms

ψM : H∗
e (M, νr;R)

∼=→ H̃∗
e (M ;R),

ψN : H∗
e (N, νs;R)

∼=→ H̃∗
e (N ;R),

ψS : H∗
e (S, νu;R)

∼=→ H̃∗
e (S;R).

Equation (5.3) shows that ψM

(
[M, r]∗e

)
= [r]∗e and ψN

(
[N, s]∗e

)
= [s]∗e. So, the

reduced cohomology result will follow immediately from the relative cohomology
result. Further, the isomorphism ψS shows that it suffices to prove the following:

H̃∗
e (S;R) ∼= (H∗

e (M, νr;R) ⊕H∗
e (N, νs;R))/

〈(
[M, r]∗e ,− [N, s]∗e

)〉
.

Consider the long exact sequence for the pair

→ H̃k−1
e (H ;R) δ→ Hk

e (S,H ;R)
j∗→ H̃k

e (S;R) → H̃k
e (H ;R) → . (5.7)

We claim that j∗ is an isomorphism unless k = n, in which case j∗ is surjective.
As H̃k

e (H ;R) = 0 for k �= n− 1, the claim is clear except for surjectivity of j∗ for
k = n− 1. By exactness, it suffices to prove that

δS : H̃n−1
e (H ;R) → Hn

e (S,H ;R)

is injective. The inclusions iM and iN together with naturality of the coboundary
map imply the following:

i∗M ◦ δS = δM ◦ iM |∗, i∗N ◦ δS = δN ◦ iN |∗. (5.8)

Either of these equations imply that δS is injective since both δM and δN are
injective (see (5.3)) and both iM |∗ and iN |∗ are isomorphism. The claim is proved.

The claim implies that H̃∗
e (S;R) is isomorphic to the quotient of H∗

e (S,H ;R)
by the kernel of j∗. By exactness of (5.7), this kernel is generated by δS(ω).

By Corollary 2.8, the inclusions iM and iN induce the isomorphism

h : H∗
e (S,H ;R)

∼=→ H∗
e (M̂, ∂νr;R) ⊕H∗

e (N̂ , ∂νs;R),

where h(α) = (i∗M (α), i∗N (α)). We also have the excision isomorphisms

φM : H∗
e (M, νr;R)

∼=→ H∗
e (M̂, ∂νr;R),

φN : H∗
e (N, νs;R)

∼=→ H∗
e (N̂ , ∂νs;R).

Therefore, the theorem will follow provided we show that the image of δS(ω) under
the isomorphism h equals the image of

(
[M, r]∗e ,− [N, s]∗e

)
under the isomorphism
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φM ⊕ φN . We have

h(δS(ω)) = (i∗M (δS(ω)), i∗N (δS(ω)))

= (δM ◦ iM |∗ (ω), δN ◦ iN |∗ (ω))

= (δM (γM ), δN (−γN ))

=
(
φM

(
[M, r]∗e

)
, φN

(− [N, s]∗e
))
,

where we used (5.8), (5.6), and (5.3). This completes our proof of the theorem.

Remark 5.5. (1) Recall that the number of ends of a space Y equals the rank of
H0

e (Y ;R) where R is a principal ideal domain [12, Proposition 13.4.11]. Thus,
the reduced end-cohomology result in Theorem 5.4 implies that the number of
ends (finite or infinite) of the binary end-sum S equals the sum of the numbers
of ends of M and N minus one. In particular, if M and N are one-ended, then
so is S.

(2) The results in this section likely hold in the piecewise-linear and topological
categories and also for nonorientable manifolds with R = Z2. In this paper, we
will not need these generalizations.

6. Ray-Fundamental Classes

6.1. Ray-fundamental classes in ladders

Fix X and Y to be closed, connected, oriented n-manifolds where n ≥ 2. Let
L := L (X,Y ) be the ladder manifold based on X and Y as defined in Sec. 3. Let r
be a ray in L emanating from x0 ∈ X0 and intersecting each Sj transversely as in
Fig. 11. Let F be a smooth closed tubular neighborhood of r with a parameterization
τ : [0,∞)×Dn → F such that r = τ([0,∞)×0) and, for each j, F∩Sj = τ(Pj×Dn),
where Pj is the (finite) set of preimages of points where r intersects Sj . If p ∈ Pj ,

Fig. 11. Ray r in ladder manifold L = L (X, Y ).



June 9, 2022 16:11 WSPC/243-JTA 2150014

488 J. S. Calcut, C. R. Guilbault & P. V. Haggerty

then let Dp denote τ(p ×Dn), and let D0 = τ(0 ×Dn) = F ∩X0. Viewing r as a
properly embedded oriented submanifold of L we may consider the Z-intersection
numbers εZ(r, Sj) (see [29, p. 68] or [16, p. 112]). Under this convention, p ∈ Pj

contributes +1 to εZ(r, Sj) if r passes from the X-side of L to the Y -side on a
small neighborhood of p and it contributes −1 if the reverse is true. Equivalently,
give D0 the orientation induced by X0 and slide that orientation along the product
structure of F to orient eachDp. Then p ∈ Pj contributes +1 to εZ(r, Sj) ifDp ↪→ Sj

is orientation preserving and −1 if Dp ↪→ Sj is orientation reversing.
Let L̂ = L − F ◦ and F̂ = F − F ◦ = τ([0,∞) × Sn−1), where F ◦ denotes

the topological interior of F as a subspace of L. Our first goal is to understand
the coboundary map δ : Hn−1

(
F̂
)
→ Hn

(
L̂, F̂

)
. To accomplish this, we use the

familiar diagram

(6.1)

and examine the boundary map ∂∗.
By calculations in Sec. 3, the fundamental classes [X0], [Y0], and [Sj ], j ∈ Z≥0,

form a free basis for Hn (L). By the long exact sequence for (L, F ) and excision,
Hn

(
L̂, F̂

)
has a free basis consisting of the relative fundamental classes

[
X̂0, ∂X̂0

]
of X̂0 := X0 − IntD0 and

[
Ŝj , ∂Ŝj

]
of the Ŝj := Sj − ∪p∈Pj IntDp together with

the fundamental class [Y0] of Y0. The (n − 1)-sphere ∂X̂0 is given the boundary
orientation; the fundamental class

[
∂X̂0

]
is our preferred generator of Hn−1

(
F̂
) ∼=

Z. (This agrees with our orientation conventions in Sec. 5 where ∂Ẑ0 played the
role of ∂X̂0.) The orientation conventions established earlier in this section imply
that [∂Dp] = −

[
∂X̂0

]
in Hn−1

(
F̂
)
.

Now, ∂∗ : Hn

(
L̂, F̂

)
→ Hn−1

(
F̂
)

is determined by its action on this basis.

We have ∂∗ ([Y0]) = 0 and ∂∗
([
X̂0, ∂X̂0

])
=
[
∂X̂0

]
(see Example 5.3). For each

j ∈ Z≥0, we have

∂∗
([
Ŝj , ∂Ŝj

])
=
[
∂Ŝj

]
=
∑
p∈Pj

− [∂Dp] = εZ (r, Sj) ·
[
∂X̂0

]
.

We now return to the pertinent coboundary map δ where we will employ the
following diagram:

(6.2)

Here, h′ and h are the surjective homomorphisms provided by Universal Coeffi-
cients, and commutativity is verified in [17, p. 200]. Injectivity of h′ and h requires
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some specifics of the situation at hand, but both are immediate by Universal Coef-
ficients when Hn−2

(
F̂
)

and Hn−1

(
L̂, F̂

)
are torsion-free. That is clearly the case

for Hn−2

(
F̂
)
. Next, excision and the long exact sequence for (L, F ) imply that

Hn−1

(
L̂, F̂

) ∼= Hn−1 (L). By calculations in Sec. 3, the latter is isomorphic to

Hn−1 (X0) ⊕Hn−1 (Y0). By Poincaré duality, Hn−1 (X0) ∼= H1 (X0) and similarly
for Y0. By Universal Coefficients, degree one Z-cohomology is always torsion-free
and our assertion follows.

The Universal Coefficients Theorem gives the following diagram dual to (6.1)
since all relevant Ext groups vanish:

Hn−1(F̂ )
δ �� Hn(L̂, F̂ ) Hn(L, F )exc.

∼=
�� l.e.

∼=
�� Hn (L) . (6.3)

As in Sec. 3, we identify Hn(L) with Z⊕Z[[x]]⊕Z where the dual fundamental class
[X0]∗ corresponds to the positive generator of the first summand, [Sj ]

∗ corresponds
to the monomial xj , and [Y0]∗ corresponds to the positive generator in the third
summand. We also identify Hn−1(F̂ ) with Z by [∂X̂0]∗ ↔ 1. Thus, the composite
map Hn−1(F̂ ) → Hn(L) may be written as

μ : Z → Z ⊕ Z[[x]] ⊕ Z.

Define εi = εZ(r, Si). With these conventions, diagram (6.2) and our description of
∂∗ imply that μ(1) = (1,

∑∞
i=0 εix

i, 0).
By the end of Sec. 2.3, we have the canonical surjection

q : Hn(L) � Hn
e (L) ∼= (Z ⊕ Z[[x]] ⊕ Z)/K.

By Remark 5.2(1), the following is now immediate.

Proposition 6.1. Let r be a ray in L emanating from x0 ∈ X0 and intersecting
each Si transversely, and let εi = εZ(r, Si). Then the absolute ray-fundamental class
determined by r is

[r]∗e =


(1,

∑∞
i=0 εix

i, 0)
� ∈ (Z ⊕ Z[[x]] ⊕ Z)/K ∼= Hn

e (L). (6.4)

Next, we prove a simple realization theorem whose proof is reminiscent of a
Mazur–Eilenberg infinite swindle.

Proposition 6.2. If α =
∑∞

i=0 aix
i ∈ Z[[x]], then there exists a ray r in L ema-

nating from x0 ∈ X0 such that [r]∗e = �(1, α, 0)�.
Proof. Recall the definition of L[j,k] ⊆ L in Sec. 3. Let x0 = (0, x) ∈ X0 be our
usual basepoint, and for each i ∈ Z>0 choose xi = (i+ 1/2, x) ∈ L[i,i+1] as in
Fig. 11. Let r0 : [0, 1] → L[0,2] be a smooth oriented path beginning at x0, ending
at x1, and circling through the rungs of L[0,2] so as to realize intersection numbers
εZ(r0, S0) = a0 and εZ(r0, S1) = −a0. With respect to Fig. 11, this path will circle
counterclockwise if a0 > 0 and clockwise if a0 < 0; if a0 = 0, then it is a vertical arc.
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Similarly, let r1 : [1, 2] → L[1,3] be a path beginning at x1, ending at x2, and
circling through the rungs of L[1,3] so as to realize intersection numbers εZ(r1, S1) =
a0 + a1 and εZ(r0, S2) = −(a0 + a1). Notice that εZ(r0 ∪ r1, S0) = a0 and εZ(r0 ∪
r1, S1) = −a0 + (a0 + a1) = a1.

In general, choose rk : [k, k+1] → L[k,k+2] beginning at xk, ending at xk+1, and
realizing intersection numbers εZ(rk, Sk) =

∑k
i=0 ai and εZ(rk, Sk+1) = −∑k

i=0 ai.
Then let r : [0,∞) → L be the union of these paths, adjusted, if necessary, to make
it a smooth embedding. Choosing a nice smooth closed tubular neighborhood of r
and applying the proof of Proposition 6.1 complete the proof.

6.2. Ray-fundamental classes in surgered stringers

The above propositions for ladders have simpler analogs for surgered stringers. Fix
a closed oriented n-manifoldX where n ≥ 2. Let S := S (X) be the surgered stringer
based on X as defined in Sec. 3. Let r be a ray in S emanating from x0 ∈ X0 and
intersecting each Sj transversely. Recall the definition of S[j,k] from Sec. 3. Working
as we did in ladder manifolds, we consider the Z-intersection numbers εZ (r, Sj). A
point of r∩Sj at which r exits S[j,j+1/2] contributes +1, and a point where r enters
S[j,j+1/2] contributes −1.

As before, let F be a smooth closed tubular neighborhood of r chosen so there
exists a parameterization τ : [0,∞)×Dn → F with r = τ([0,∞)× 0) and, for each
j, F ∩Sj = τ(Pj ×Dn), where Pj is the set of preimages of r∩Sj . Let D0 = F ∩X0

and for each p ∈ Pj let Dp = τ(p × Dn) ⊆ Sj. Let Ŝ = S − F ◦; F̂ = F − F ◦;
X̂0 := X0 − IntD0; and Ŝj := Sj − ∪p∈Pj IntDp. Using calculations from Sec. 3,
the long exact sequence for (S, F ), excision, and notation as above for ladders, the
relative fundamental classes [X̂0, ∂X̂0] and [Ŝj , ∂Ŝj], j ∈ Z≥0, form a free basis for
Hn(Ŝ, F̂ ). Our preferred generator of Hn−1(F̂ ) ∼= Z is [∂X̂0], and [∂Dp] = −[∂X̂0]
in Hn−1(F̂ ).

The map ∂∗ : Hn(Ŝ, F̂ ) → Hn−1(F̂ ) is given by [X̂0, ∂X̂0] �→ [∂X̂0] and
[Ŝj , ∂Ŝj ] �→ εZ(r, Sj)·[∂X̂0]. The Universal Coefficients Theorem gives the following
diagram:

Hn−1(F̂ )
δ �� Hn(Ŝ, F̂ ) Hn(S, F )exc.

∼=
�� l.e.

∼=
�� Hn(S) . (6.5)

Identify Hn(S) with Z ⊕ Z[[x]] by [X0]∗ ↔ (1, 0) and [Sj ]∗ ↔ (0, xj). Identify
Hn−1(F̂ ) with Z by [∂X̂0]∗ ↔ 1. The composite map Hn−1(F̂ ) → Hn(S) is now
written as μ : Z → Z ⊕ Z[[x]]. Define εi = εZ (r, Si). Then μ(1) = (1,

∑∞
i=0 εix

i).
We have the canonical surjection

q : Hn (S) � Hn
e (S) ∼= Z ⊕ Z[[x]]/Z[x].

Our work yields the following.

Proposition 6.3. Let r be a ray in S emanating from x0 ∈ X0 and intersecting
each Si transversely, and let εi = εZ (r, Si). Then the absolute ray-fundamental class
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determined by r is

[r]∗e =
(
1,


∑∞
i=0 εix

i
�) ∈ Z ⊕ Z[[x]]/Z[x] ∼= Hn

e (S) .

Furthermore, if α =
∑∞

i=0 aix
i ∈ Z[[x]], then there exists a ray r in S emanating

from x0 ∈ X0 such that [r]∗e = (1, �α�).
The proof of the realization result in this proposition is simpler than that for

ladder manifolds. No “swindle” is needed here.

7. Proof of the Main Theorem

We first prove the Main Theorem using specific one-ended, open 4-manifolds. Then
we describe various ways of adapting the proof to other one-ended, open manifolds.
Let T k = ×kS

1 be the k-torus. Define

M = S
(
T 3
) ∪∂ (T 2 ×D2),

N = ([0,∞) × (S1 × S2)) ∪∂ (S1 ×D3).

So, M is the surgered stringer based on T 3 capped with T 2 × D2, and N is the
stringer based on S1 × S2 capped with S1 ×D3 as in Fig. 12.

Let α =
∑∞

i=0 aix
i ∈ Z[[x]]. By Proposition 6.3, there is a ray r ⊂ IntM such

that

[r]∗e = (1, �α�) ∈ Z ⊕ Z[[x]]/Z[x] ∼= H̃3
e (M).

As N is one-ended, collared at infinity, and has dimension at least four, it contains
a unique ray up to ambient isotopy. So, let s ⊂ IntN be a straight ray as in Fig. 12.

Fig. 12. Open manifolds M and N with rays r ⊂ Int M and s ⊂ Int N .
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By Example 5.3, we have

[s]∗e = 1 ∈ Z ∼= H̃3
e (N).

Let S = (M, r) � (N, s). By Sec. 3 and Theorem 5.4, we have H̃∗
e (S) ∼= A where

H̃k
e (S) ∼= Ak :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((Z ⊕ Z[[x]]/Z[x]) ⊕ Z)/I if k = 3,

Z3 ⊕ 0 ⊕ Z if k = 2,

Z3 ⊕ Z[[τ ]]/Z[τ ] ⊕ Z if k = 1,

0 ⊕ 0 ⊕ 0 otherwise.

Here, I is the homogeneous ideal of degree 3 generated by ((1, �α�) ,−1).
Next, let C be an arbitrary graded Z-algebra (possibly non-unital). We assign a

sequence to C by the following procedure:

(1) Let J ≤ C1 be the subgroup of elements in C1 that are sent to 0 by every element
of the dual HomZ (C1,Z) of C1. If J is not a two-sided ideal of C, then return
the empty sequence () and end the procedure. Otherwise, J is a two-sided
homogeneous ideal of C.

(2) Let D = C/J , which is a graded Z-algebra.
(3) In D, let U ≤ D3 be the subgroup generated by all products of three elements

of degree one.
(4) In D, let V ≤ D3 be the subgroup generated by elements that are a product of

a degree one element and a degree two element but are not a product of three
degree one elements.

(5) If V is not infinite cyclic, then return the empty sequence () and end the
procedure. Otherwise, let v be either generator of V .

(6) Let π : D3 → D3/U be the canonical homomorphism.
(7) Return the height of π(v) in D3/U and end the procedure.

The notion of the height of an element in an abelian group is reviewed below
in Appendix A. Let h (C) denote the sequence (empty or infinite in length) deter-
mined by the procedure.

Proposition 7.1. If C and C′ are isomorphic as graded Z-algebras, then h (C) =
h (C′). Applied to the specific case of the end-cohomology algebra of the end-sum
S described above, this yields h

(
H̃∗

e (S)
)

= h (A) which equals the height of �α� ∈
Z[[x]]/Z[x].

Proof. Let f : C → C′ be a graded Z-algebra isomorphism. Note that f respects
gradings, products, sums, and the Z-module structure. In particular, f restricts
to an isomorphism f | : C1 → C′

1, and the latter induces the isomorphism of dual
modules HomZ (C′

1,Z) → HomZ (C1,Z) given by ψ �→ ψ ◦ f |. It follows that f(J) =
J ′. If J is not a two-sided ideal of C, then J ′ is not a two-sided ideal of C′ and
we have h (C) = () = h (C′). Otherwise, both J and J ′ are two-sided homogeneous
ideals and f induces the graded Z-algebra isomorphism F : D → D′ given by
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F (x + J) = f(x) + J ′. As F respects gradings, products, sums, and the Z-module
structure, we get that F restricts to isomorphisms D3 → D′

3, U → U ′, and V → V ′.
So, if V is not infinite cyclic, then neither is V ′ and we have h (C) = () = h (C′).
Otherwise, V and V ′ are both infinite cyclic and F (v) = ±v′. The isomorphism F

induces the isomorphism G : D3/U → D′
3/U

′ given by G(x + U) = F (x) + U ′. So,
the following diagram commutes:

(7.1)

In particular, G sends π(v) �→ ±π′(v′). The sequence h(C) is the height of π(v) ∈
D3/U , and the sequence h(C′) is the height of π′(v′) ∈ D′

3/U
′. These sequences

are equal since height is invariant under isomorphism (see Corollary A.19) and sign
change. This proves the first claim in the proposition and implies that h

(
H̃∗

e (S)
)

=
h (A). It remains to show that h (A) equals the height of �α� ∈ Z[[x]]/Z[x].

Applying the procedure to A, Corollary A.2 implies that

J = 0 ⊕ Z[[τ ]]/Z[τ ] ⊕ 0 ≤ A1.

Recall the product structure of A given in Sec. 3. It implies that the product (in
either order) of any element of J with any element of A vanishes. So, J is a two-
sided homogeneous ideal of A. Taking the quotient of A by J , we obtain the algebra
D where

Dk :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
((Z ⊕ Z[[x]]/Z[x]) ⊕ Z)/I if k = 3,

Z3 ⊕ 0 ⊕ Z if k = 2,

Z3 ⊕ 0 ⊕ Z if k = 1,

0 ⊕ 0 ⊕ 0 otherwise.

Define U ≤ D3 and V ≤ D3 as in the procedure. Using the well known Z-cohomology
rings of T 3 and S1 × S2 (see [17, p. 216]), we have U = ((Z ⊕ 0) ⊕ 0)/I ∼= Z and
V = ((0 ⊕ 0) ⊕ Z)/I ∼= Z which are both infinite cyclic. Let v be either generator
of V . Let π : D3 → D3/U be the canonical homomorphism. Then h(A) equals the
height of π(v) ∈ D3/U .

Conceptually, A3 = D3 is obtained from Z⊕Z[[x]]/Z[x] by summing with Z and
then identifying the new Z with an infinite cyclic subgroup of Z⊕Z[[x]]/Z[x]; essen-
tially, this does not change the group. More precisely, consider the homomorphism
η : D3 → Z⊕Z[[x]]/Z[x] defined by �((i, �β�), j)� �→ (i+ j, �β� + j�α�). Noting that�((i, �β�), j)� = �((i+ j, �β� + j�α�), 0)�, we see that η is an isomorphism of groups.
Observe that η(U) = Z ⊕ 0, and η(V ) is the infinite cyclic subgroup generated by
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(1, �α�). We have the commutative diagram

(7.2)

where E is induced by η and the two downward homomorphisms in the triangle are
the canonical projections which induce the horizontal isomorphism. At the level of
elements, we have

(7.3)

As height is invariant under isomorphism and sign change, the height of π(v) ∈
D3/U equals the height of �α� ∈ Z[[x]]/Z[x] proving the proposition.

As there exist uncountably many heights of elements in Z[[x]]/Z[x] (see
Lemma A.17), the Main Theorem is proved. Crucial to our proof was the detection
of the specific subgroups U and V in an isomorphically invariant manner. To enable
this, we chose manifolds with useful cup product structures. In the absence of such
cup products, results at the end of Sec. 3 show that these subgroups cannot be so
detected.

We close this section with a sample of variations of our proof of the Main
Theorem. Always, we consider a pair of one-ended, open m-manifolds M and N .

(1) To prove the Main Theorem for each dimension m ≥ 5, consider the manifolds

M = S
(
S2 × Sm−3

) ∪∂ (S2 ×Dm−2),

N = ([0,∞) × (S1 × Sm−2)) ∪∂ (S1 ×Dm−1).

The proof is the same, except we consider the subgroups U and V of

Dm−1
∼= ((Z ⊕ Z[[x]]/Z[x]) ⊕ Z)/I,

where U = ((Z⊕0)⊕0)/I ∼= Z is the subgroup generated by elements that are a
product of a degree two element and a degree m−3 element (if m = 5, then this
means the product of two degree two elements), and V = ((0⊕0)⊕Z)/I ∼= Z is
the subgroup generated by elements that are a product of a degree one element
and a degree m− 2 element.

(2) For dimension m = 3, consider closed, oriented surfaces Σg1 and Σg2 of distinct
positive genera g1 > g2 (the case g1 < g2 may be handled similarly). Consider
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the manifolds

M = S (Σg1) ∪∂ Hg1 ,

N = ([0,∞) × Σg2) ∪∂ Hg2 ,

where boundaries are capped with handlebodies. As in the main proof, we let
S = (M, r) � (N, s) and, by Sec. 4 and Theorem 5.4, we have

Dk :=

⎧⎪⎨⎪⎩
((Z ⊕ Z[[x]]/Z[x]) ⊕ Z)/I if k = 2,

Z2g1 ⊕ 0 ⊕ Z2g2 if k = 1,

0 ⊕ 0 ⊕ 0 otherwise.

In this proof, we assume �α� �= 0. So, products of degree one elements form
a rank two subgroup of D2; products in the first factor generate U := ((Z ⊕
0) ⊕ 0)/I, and products in the third factor generate V which is the Z-span of�((1, �α�) ,−1)�.

Consider subgroups C ≤ D1 such that: (1) products of elements of C gen-
erate a rank one subgroup D ≤ D2 and (2) the product of each element of C
with each element of D1 lies in D. Note that Z2g1 ⊕ 0 ⊕ 0 is such a subgroup.
Among all of these subgroups, consider one C′ of maximal rank. Suppose that
C′ is not contained in Z2g1 ⊕0⊕0. Then using Lemma 4.1, we see that C′ meets
both Z2g1 ⊕ 0 ⊕ 0 and 0 ⊕ 0 ⊕ Z2g2 nontrivially. By Poincaré duality, elements
that are the product of an element of C′ and an element of D1 generate a rank
two subgroup of D2. This contradicts the defining properties of C′. Therefore,
C′ is contained in Z2g1 ⊕ 0 ⊕ 0. Among all such subgroups of maximal rank,
Z2g1 ⊕ 0⊕ 0 is maximal with respect to containment. This algebraically distin-
guishes Z2g1 ⊕ 0 ⊕ 0 in an isomorphically invariant manner, and, hence, does
the same for U . The rest of the proof is unchanged.

(3) Similarly, one may prove the Main Theorem in each dimension m ≥ 3 using
ladder manifolds in place of surgered stringers. Details are left to the interested
reader.

(4) In all of the above manifolds used to prove the Main Theorem in some dimension
m, one may use any compact caps to eliminate boundary and the proof is
unchanged.
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Appendix A. Infinitely Generated Abelian Group Theory

We present some relevant results from the theory of infinitely generated abelian
groups. This theory is subtle, beautiful, and (in our experience) not widely known
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among topologists. For that reason, we provide proofs, as elementary as possible, for
a few foundational results. These results are then applied to prove a few propositions
tailored specifically to our needs in this paper. We close this appendix with a
discussion of height in an abelian group.

A.1. Classical results

The additive abelian group Z[[x]] ∼= Z × Z × · · · is called the Baer–Specker group.
Famously, it is not a free Z-module; we include a proof of this fact below (see also
[30]). The additive abelian group Z[x] ∼= Z ⊕ Z ⊕ · · · is, of course, a free Z-module
with basis

{
1, x, x2, . . .

}
. Throughout this and the next appendix, all maps are

Z-module homomorphisms. The dual module of a Z-module M is the Z-module

M∗ := HomZ (M,Z) .

Fact A.1. If f : Z[[x]] → Z vanishes on Z[x], then f = 0.

Proof. Fix an integer p > 1. Consider the element

α = a0p
0x0 + a1p

1x1 + a2p
2x2 + · · · ∈ Z[[x]],

where each ai ∈ Z. As f vanishes on Z[x], we get

f(α) = f(akp
kxk + ak+1p

k+1xk+1 + · · ·) = pkf(akp
0xk + ak+1p

1xk+1 + · · ·)
and so pk divides f(α) for each integer k > 0. Hence, f(α) = 0.

Next, fix coprime integers p, q > 1. Let γ =
∑
cix

i be an arbitrary element of
Z[[x]]. We wish to write γ = α+ β where α =

∑
aip

ixi and β =
∑
biq

ixi. For each
i ≥ 0, we seek integers ai and bi such that ci = aip

i + biq
i, which is always possible

since pi and qi are coprime. Now, f(γ) = f(α) + f(β) = 0 + 0 = 0.

Corollary A.2. (Z[[x]]/Z[x])∗ = {0}.

Proof. Let f : Z[[x]]/Z[x] → Z, and let π : Z[[x]] � Z[[x]]/Z[x] be the canonical
surjection. So, f ◦ π vanishes on Z[x]. By Fact A.1, f ◦ π = 0. As π is surjective,
f = 0.

Recall that HomZ(−,Z) distributes over finite direct sums.

Corollary A.3. The Z-module Z[[x]]/Z[x] is uncountable and torsion-free, but does
not split off Z as a direct summand and is not a free Z-module.

Proof. The first two claims are simple exercises. For the last two claims, otherwise
(Z[[x]]/Z[x])∗ would be nonzero, contradicting Corollary A.2.

Intuitively, Z[[x]]/Z[x] is flexible and large regarding injective maps of free Z-
modules into it, but is rigid regarding maps to free Z-modules.

Corollary A.4. (Z ⊕ Z[[x]]/Z[x] ⊕ Z)∗ ∼= Z2.
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Proof. Immediate by Corollary A.2.

Fact A.1 also implies that two maps Z[[x]] → Z that agree on Z[x] must be
equal (consider their difference). Combining this observation with projections, we
see that two maps Z[[x]] → Z[[x]] that agree on Z[x] must be equal (see also
[11, Lemma 94.1]). We mention that Z[x]∗ ∼= Z[[x]] since Z[x] is free with Z-basis{
1, x, x2, . . .

}
. The isomorphism is f �→ ∑

i≥0 f(xi)xi. For completeness, we prove
the “dual” fact that Z[[x]]∗ ∼= Z[x].

The following fact is long known.

Fact A.5. If f : Z[[x]] → Z, then f(xk) = 0 for cofinitely many k.

Proof. Consider an element

α = a0! + a1!x+ a2!x2 + · · · ∈ Z[[x]]

for integers 0 < a0 < a1 < a2 < · · · to be determined. For each k, we have a tail of
α denoted

ak!βk = ak!xk + ak+1!xk+1 + · · · ∈ Z[[x]],

where

βk =
ak!
ak!

xk +
ak+1!
ak!

xk+1 + · · · ∈ Z[[x]].

Notice that βk lies in Z[[x]] since the aj ’s are increasing. We have

f(α) = a0!f(1) + a1!f(x) + · · · + ak!f(xk) + ak+1!f(βk+1) ∈ Z.

Hence

ak+1!f(βk+1) = f(α) − a0!f(1) − a1!f(x) − · · · − ak!f(xk).

By the triangle inequality

ak+1! |f(βk+1)| ≤ |f(α)| + a0! |f(1)| + a1! |f(x)| + · · · + ak!
∣∣f(xk)

∣∣ .
Therefore,

|f(βk+1)| ≤ |f(α)|
ak+1!

+
a0! |f(1)| + a1! |f(x)| + · · · + ak!

∣∣f(xk)
∣∣

ak+1!
.

The first term on the right side tends to zero as k → ∞, and we may inductively
choose the positive integers aj so that the second term is less than 1/(k + 1).
Hence, the non-negative integers |f(βk+1)| tend to 0 as k → ∞. So, f(βk+1) = 0
for cofinitely many k.

Now, ak!βk − ak+1!βk+1 = ak!xk and so f(xk) = 0 for cofinitely many k, as
desired.

Corollary A.6. Z[[x]]∗ ∼= Z[x].
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Proof. Let f : Z[[x]] → Z. Fact A.5 implies that f(xk) = 0 for cofinitely many k.
Thus, g : Z[[x]] → Z defined by

g

⎛⎝∑
i≥0

cix
i

⎞⎠ =
∑
i≥0

cif(xi)xi

is a well-defined Z-module homomorphism. As f and g agree on Z[x], we see that
f = g. Note that the isomorphism Z[[x]]∗ → Z[x] is f �→∑

i≥0 f(xi)xi.

Corollary A.7. Z[[x]] is not a free Z-module.

Proof. Otherwise, there is a Z-basis for Z[[x]] which is necessarily uncountable and
so Z[[x]]∗ is uncountable. This contradicts Corollary A.6.

A.2. Applications of duals to end-cohomology of ladder manifolds

We now move to Z-modules and algebras arising from ladder manifolds. Let
L (X,Y ) be a ladder manifold based on closed, connected, and oriented n-manifolds
X and Y where n ≥ 2. Recall from Sec. 3 that the degree n subgroup of the end-
cohomology algebra of L (X,Y ) is

H̃n
e (L (X,Y )) ∼= (Z ⊕ Z[[σ]] ⊕ Z)/K,

where K =
{
(
∑
βi, β,−

∑
βi) |β =

∑
βiσ

i ∈ Z[σ]
} ∼= Z[σ]. Sometimes, we write x

instead of σ in K. We begin by computing the dual module of (Z ⊕ Z[[x]] ⊕Z)/K.

Lemma A.8. If h : Z[[x]] → Z vanishes on

L :=
{
β =

∑
βix

i ∈ Z[x]
∣∣∣∑ βi = 0

}
then h = 0.

Proof. By Fact A.5, there exists k ≥ 0 such that h(xk) = 0. Let α =
∑
aix

i be an
arbitrary element of Z[x] and let n =

∑
ai. Then α−nxk ∈ L and 0 = h(α−nxk) =

h(α). So, h vanishes on Z[x]. By Fact A.1, h = 0.

Corollary A.9. If f : Z⊕Z[[x]]⊕Z → Z vanishes on K, then f = 0 on 0⊕Z[[x]]⊕0
and f(r, γ, s) = j(r + s) for some fixed integer j.

Proof. Consider the inclusion i : Z[[x]] ↪→ Z ⊕ Z[[x]] ⊕ Z given by i(γ) = (0, γ, 0).
The composition f ◦ i : Z[[x]] → Z vanishes on L. By Lemma A.8, f ◦ i = 0. Thus,
f vanishes on 0 ⊕ Z[[x]] ⊕ 0. As (1, 1,−1) ∈ K, we get

0 = f(1, 1,−1) = f(1, 0, 0) + f(0, 1, 0)− f(0, 0, 1) = f(1, 0, 0)− f(0, 0, 1)

and f(1, 0, 0) = f(0, 0, 1). Define j := f(1, 0, 0). Then f(r, γ, s) = j(r + s).

Corollary A.10. ((Z ⊕ Z[[x]] ⊕ Z)/K)∗ ∼= Z.
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Fig. A.1. Wedge space W (X, Y ).

Proof. Let f : (Z⊕Z[[x]]⊕Z)/K → Z, and let π : Z⊕Z[[x]]⊕Z � (Z⊕Z[[x]]⊕Z)/K
be the canonical surjection. The composition f ◦ π vanishes on K. By the previous
corollary, f ◦ π(r, γ, s) = j(r + s) for some fixed integer j. As π is surjective,
f(�(r, γ, s)�) = j(r + s). In particular, j = 1 gives a generator for the dual module
in question.

Corollary A.11. The uncountable, torsion-free Z-modules Z⊕Z[[x]]/Z[x]⊕Z and
(Z ⊕ Z[[x]] ⊕ Z)/K are not isomorphic.

Proof. They have nonisomorphic duals by Corollaries A.4 and A.10.

As an application of Corollary A.11, consider the space in Fig. A.1. The wedge
space W (X,Y ) based on X and Y (a nonmanifold) is obtained from the disjoint
union of the stringers on X and Y by simply wedging on the rungs as shown. The
end-cohomology algebra of W (X,Y ) is

H̃k
e (W (X,Y ) ;R) ∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hn(X ;R) ⊕R[[σ]]/R[σ] ⊕Hn(Y ;R) if k = n,

Hk(X ;R)⊕ 0 ⊕Hk(Y ;R) if 2 ≤ k ≤ n− 1,

H1(X ;R) ⊕R[[τ ]]/R[τ ] ⊕H1(Y ;R) if k = 1,

0 otherwise,

where the cup product is coordinatewise in the direct sum and vanishes in the
middle coordinate. While the end-cohomology algebra of the wedge space W (X,Y )
bears a striking resemblance to that of the ladder manifold L (X,Y ), they are not
isomorphic.

Corollary A.12. The end-cohomology algebras of the ladder manifold L (X,Y )
and the wedge space W (X,Y ) are not isomorphic. In particular, these two spaces
are not proper homotopy equivalent.

Proof. The degree n subgroups of these two algebras are nonisomorphic by
Corollary A.11.
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A.3. Height in abelian groups

The notion of the height of an element plays an important role in the study of
infinite abelian groups. Let G be an additive abelian group, g ∈ G, and p > 1 a
prime integer. Consider the following equation in G for integers k ≥ 0:

pkx = g. (†)

The height of g ∈ G at p is

Hp(g) := k,

where k ∈ Z≥0 is maximal such that (†) has a solution x ∈ G. If (†) has a solution
for every k ∈ Z≥0, then we write Hp(g) = ∞. Let 2 = p1 < p2 < · · · be the primes.
The height of g ∈ G is the sequence

H(g) := (Hp1(g), Hp2(g), . . .) ∈ {0, 1, 2, . . . ,∞}N. (‡)

For example, H(0) = (∞,∞,∞, . . .) in every abelian group G. If G is a field of
characteristic zero, then H(g) = (∞,∞,∞, . . .) for all g ∈ G. If G is a field of
characteristic p and 0 �= g ∈ G, then Hp(g) = 0 and Hq(g) = ∞ for each prime
q �= p. In general, the height of g depends on G, since the solutions x of (†)
are required to lie in G. For the sake of intuition, it is useful to look at some
examples. In what follows, the partial ordering � on {0, 1, 2, . . . ,∞}N is defined by:
(mi)i∈N � (ni)i∈N if and only if mi ≤ ni for all i ∈ N.

Example A.13. Let G = Z and g = 1400. The prime factorization 1400 = 23527
reveals that H2(g) = 3, H5(g) = 2, H7(g) = 1, and Hp(g) = 0 for all other primes
p. Inserting this data into (‡) give us

H(1400) = (3, 0, 2, 1, 0, 0, 0, . . .).

More generally, if 0 �= g =
∏∞

i=1 p
ki

i , then

H(g) = (k1, k2, k3, . . .),

where all ki <∞ and all but finitely many ki are zero.

Example A.14. Let G = Z[x] and α =
∑n

i=0 aix
i ∈ Z[x] where an �= 0. Recall

that the content of α is

c(α) = gcd (a0, a1, . . . , an) ∈ Z>0.

It is straightforward to verify that the height of α ∈ Z[x] equals the height of
c(α) ∈ Z. Thus, as in the previous example, all heights of nonzero elements contain
finitely many nonzero entries each of which is finite.
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Example A.15. Let G = Z[[x]] and 0 �= α =
∑∞

i=0 aix
i ∈ Z[[x]]. We define the

content of α to be

c(α) = gcd (a0, a1, a2, . . .) ∈ Z>0.

This is well defined since some an �= 0 and

∞ > gcd(a0, a1, . . . , an) ≥ gcd(a0, a1, . . . , an+1) ≥ gcd(a0, a1, . . . , an+2) ≥ · · · .
Only finitely many of these inequalities can be strict by the well-ordering principle.
In particular, c(α) = gcd (a0, a1, . . . , aN) for some non-negative integer N = N(α).
Again, it is straightforward to verify that the height of α ∈ Z[[x]] equals the height
of c(α) ∈ Z, which yields exactly the same collection of heights as in the previous
two examples. Therefore, even though Z[[x]] is uncountable, its elements realize
only countably many heights.

Example A.16. In G = Z[[x]]/Z[x] height becomes more interesting. Consider,
for example

H
(


2 + 2x+ 2x2 + · · ·�) = (1, 0, 0, . . .),

H
(


2350 + 2351x+ 2352x2 + · · ·�) = (3, 0,∞, 0, 0, . . .),

H
(


21x+ 2232x2 + 233353x3 + · · ·�) = (∞,∞,∞, . . .).

The key here is that, for any power series
∑∞

i=0 aix
i ∈ Z[[x]] representing an element

of Z[[x]]/Z[x], we may ignore any finite initial sum
∑j

i=0 aix
i. This leads to the

following.

Lemma A.17. Let G = Z[[x]]/Z[x] and let h = (h1, h2, . . .) ∈ {0, 1, 2, . . . ,∞}N be
a height. Then there exists g ∈ G such that H(g) = h.

Proof. The idea of the proof is contained in Example A.16. Let 2 = p1 < p2 < · · ·
be the rational primes. For each integer i ≥ 1, define

ai := p
e(1,i)
1 p

e(2,i)
2 · · · pe(i,i)

i ∈ Z>0,

where

e(n, i) :=

{
i if hn ≥ i,

hn if hn < i.

Let g =

∑∞

i=1 aix
i
� ∈ G. Then the height of g ∈ G is H(g) = h.

For a general discussion of height, see [10, Chap. VII]. For our purposes, the
crucial facts are Lemma A.17 and the following.

Lemma A.18. Let φ : G → G′ be a homomorphism of abelian groups. Then for
all g ∈ G we have H(g) � H(φ(g)).
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Proof. Let p > 1 be a prime integer and suppose g = pkx in G. Then φ(g) =
φ(pkx) = pkφ(x) in G′. Therefore, Hp(g) ≤ Hp(φ(g)).

Corollary A.19. Let φ : G → G′ be an isomorphism of abelian groups. Then for
all g ∈ G we have H(g) = H(φ(g)).
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