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ARTIN PRESENTATIONS OF COMPLEX SURFACES

J. S. CALCUT AND H. E. WINKELNKEMPER

Abstract. We construct Artin presentations of infinitely many complex sur-
faces. Namely, for all elliptic surfaces E(n), in particular for the Kummer
surface K3. Thus, not only does AP theory contain an analogue of Donald-
son’s Theorem, but also a purely group-theoretic theory of Donaldson and
Seiberg-Witten invariants.

Not surprisingly, our explicit Artin presentations for the Kummer surface
are approachable with a computer using, say, MAGMA and provide a plethora
of interesting examples pertaining to knot theory in Z-homology 3-spheres.

1. Introduction

In the purely group-theoretic theory of Artin presentations, a smooth, com-
pact, connected, simply-connected 4-manifold W 4(r) with a connected bound-
ary �W 4(r) = M3(r) is already determined, and can be reconstituted, from a
certain presentation (an Artin presentation) of the fundamental group of its
boundary [W1]. If the boundary is S3 then of course the Artin presentation
presents the trivial group. Even in this case the Artin presentation already en-
codes all of the smooth structure of the 4-manifold. Thus, it makes sense to ask
whether an arbitrary, smooth, closed, connected, simply-connected 4-manifold
is given by an Artin presentation.

We extend important work of Harer, Kas and Kirby [HKK] and show that
all elliptic surfaces E(n) admit Artin presentations. This gives the first bridge
between AP theory and algebraic geometry. These Artin presentations are of
special interest due to the fact that complex algebraic surfaces possess non-
trivial Donaldson invariants. In particular, this augments the remarkable
fact (Theorem 1 of [W1], [R] p. 621) that Donaldson’s Theorem, despite being
proved with gauge theory/connections (i.e. the smooth continuum), persists
and survives the radical, discrete, purely group theoretic holography of AP
theory.

The following illustrates the AP theory program concerning the computation
of Seiberg-Witten and Donaldson invariants and shows that the group theoretic
AP encoding goes much deeper than e.g. the mere encoding of a group through
its presentation:

Recall González-Acuña’s formula, [CS] p. 66, for the Rohlin invariant of a
Z-homology 3-sphere Σ3(r) given by an Artin presentation r ∈ Rn (for clarity
we consider here only the case where A(r) is the identity matrix, see section
2.1 for notation):

µ(Σ3(r)) =
d2 − 1

8
mod 2,
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where d = �(−1), � being the Alexander polynomial of the associated presen-
tation:

〈x1, . . . , xn | x1r1 = r1x2, x2r2 = r2x3, . . . , xn−1rn−1 = rn−1xn〉,

where the group obviously abelianizes to Z.
This remarkable formula is entirely from the discrete theory of finitely pre-

sented groups: there is no need to mention cobordisms, spin structures, skein
methods, Heegaard decompositions, representations into SU(2), Riemannian
metrics, infinite dimensional or moduli spaces, or indeed even the smooth con-
tinuum, nor do any metric dependence, wall crossing, or word problems arise
here.

We remark that González-Acuña’s formula already shows that an analogue
of Floer theory should also appear in AP theory since the Rohlin invariant is
the Euler characteristic (mod 2) in Floer theory. In fact, we suspect that ‘the
8 of González-Acuña is the 8 of Floer’.

Concerning the importance of relating Donaldson and Floer theory, both
mathematically and physically, see [D] p.63 and [Wi1] p.352.

Consider the more general problem concerning the relative Donaldson in-
variants [TB],[Wi1] of W 4 (r) which, when A (r) is unimodular, take values in
the Floer homology of �W 4 (r) = Σ3 (r).

The computational program of AP theory can be stated as: these invariants
and others should be computed solely in function of the Artin presentation r in
the discrete theory of finitely presented groups, just as, with González-Acuña’s
formula, this was done for the Rohlin invariant of Σ3(r).

This is entirely in the purely group-theoretic spirit of the Princeton School
of Artin, Fox, Lyndon, Papakyriakopoulos, Stallings, et al. and extends their
approach, as far as 3D/4D manifold theory is concerned, to its natural meta-
mathematical boundary.

Immediate natural, important general questions arise (both mathematical
and physical):

1. Since AP theory dispenses not only with metrics but even topology, what
becomes of Witten’s celebrated Feynmanian formulation of Donaldson’s invari-
ants as correlation functions/expectation values [D] p. 53, [Wi2], [Wi3], [AJ],
[Di] pp. 36, 39? What is the topologically independent (i.e. purely AP theoreti-
cal) analogue of Witten’s metric independent Lagrangian for the Casson theory
[AJ] p.121? What does González-Acuña’s formula for the Rohlin invariant sug-
gest? Is the mysterious question about the relationship between the Donaldson
invariants of oppositely oriented X4 related to the purely group-theoretic one of
finding the inverse in Rn of an Artin presentation?

2. In the absence of moduli spaces, etc., is Witten’s “mass-gap” discussion
regarding Donaldson theory, [Wi3] pp.289-291, still relevant in AP theory?

3. Is the Denjoy-like inequivalence between Seiberg-Witten theory and Don-
aldson theory detectable in AP theory? Recall that Seiberg-Witten theory re-
quires spinors and the Dirac operator, i.e. an underlying C1 structure, whereas
Donaldson’s theory is valid on the wider class of Lipschitz manifolds [D] p.69,
[S], [DS].



ARTIN PRESENTATIONS OF COMPLEX SURFACES 65

4. In general, the word problem obstructs the study of arbitrary smooth
4-manifolds. Although 4-manifolds in AP Theory are simply connected, we
can still ask whether the group-theoretical physical questions of Geroch-Hartle
[GH] (see also [F]) are still relevant when transferred to the group theory of
3-manifolds. Theorem I of [W1] seems to illustrate a purely group-theoretic
Bohm-Aharonov phenomenon.

5. AP Theory does not just dispense with the smooth continuum, but also
dispenses with integer (co)homology/intersection theory since all of this infor-
mation is already given simply by the symmetric integer matrix A (r). Hence,
should e.g. the Kronheimer-Mrowka canonical basic class of W 4 (r), when
�W 4 (r) = S3, [D] p.52, [K], [St], be already determined with Number Theory,
à la Elkies [E], [D] p.67 and Borcherds [B], thus explaining the persistence
of invariants constructed with the aid of a complex structure when this struc-
ture does not exist? For the same reason, difficult ‘minimal genus’ and ‘simple
type’ problems, [D] p.68, [St] p.156, should be studied in this, their ultimate
natural context, where artificial complications caused by the use of the smooth
continuum are absent.

It does not seem surprising, due to the basic nature of the K3 complex
surface (e.g. it is the only 4D, closed, simply connected Calabi-Yau manifold
and its quadratic form is the first even non-Donaldson form), that our Artin
presentations lead to several interesting and instructive examples (section
3 ahead) which complement and extend to the ‘softer’ non-Donaldson case
those examples obtained from such matrices as E8, φ4n, and the Coxeter-Todd
extremal duodenary matrix 2D2

12 [W1].

2. The Artin presentations

The purpose of this section is to construct Artin presentations for all elliptic
surfaces E(n). This is carried out completely for E(2), which is diffeomorphic
to the Kummer surface K3 [GS], p.74, and follows mutatis mutandis for the
others. The organization runs as follows: 2.1 is a brief discussion of Artin
presentations and framed pure braids, in 2.2 we obtain a surgery diagram for
E(n) that is a framed pure braid, 2.3 provides an explicit algorithm (fixing all
conventions) for obtaining an Artin presentation from a framed pure braid,
and 2.4 combines everything obtaining the desired Artin presentation for K3.

(2.1) Artin presentations and pure braids. We begin by reviewing some
of the fundamentals of AP theory. For a rigorous introduction to AP theory,
proofs of the statements made below and a thorough bibliography we refer the
reader to [W1].

Let Fn = 〈x1, . . . , xn〉 be the free group on n-generators. An Artin presen-
tation r is a balanced presentation r = 〈x1, . . . , xn | r1, . . . , rn〉 satisfying the
equation:

(AC) x1x2 · · · xn = (r−1
1 x1r1)(r−1

2 x2r2) · · · (r−1
n xnrn),

in Fn, which we will refer to as the Artin condition. The set of all Artin pre-
sentations on n-generators is denoted Rn and forms a group. By Ωn we mean
the compact 2-disk with n-holes and boundary �Ωn equal to the disjoint union



66 J. S. CALCUT AND H. E. WINKELNKEMPER

of �0, �1, . . . , �n (see [W1] p.225). An Artin presentation r ∈ Rn determines,
among other things, the following:

π(r) : the group presented by r,

M3(r) : a closed orientable 3-manifold,

W 4(r) : a smooth compact connected

simply-connected 4-manifold,

A(r) : an n × n symmetric integer matrix,

h(r) : a self diffeomorphism of Ωn unique

up to isotopy fixing �Ωn with

h|�Ωn
equal to the identity.

The relationships between these objects are canonical. The manifold M3(r)
bounds W 4(r), has fundamental group isomorphic to π(r), and is the open book
defined by h(r). The symmetric matrix A(r) is the exponent sum matrix of r
and also represents the intersection form of W 4(r). The manifold M3(r) is a
Z-homology 3-sphere if and only if det A(r) = ±1, and in this case we write
Σ3(r) instead of M3(r).

An Artin presentation r ∈ Rn also determines an automorphism of Fn by
the mapping xi �→ r−1

i xiri. Namely, this is the automorphism h# : π1(Ωn, p0) →
π1(Ωn, p0) where p0 is a distinguished point in �0 ⊂ �Ωn and x1, . . . , xn repre-
sent the canonical generators (see Figure 9 ahead and [W1] p.225 and p.244).
This view will prove useful when composing Artin presentations.

As pointed out in [W1], Rn is canonically isomorphic to Pn × Z
n, the framed

pure braid group, where Pn is the pure braid group on n-strands. To see this,
notice that r ∈ Rn determines h = h(r) and h can be realized concretely in
R

3 by taking Ωn × I (I denotes the closed unit interval), suitably braiding the
inner boundary tubes with one another, and twisting the inner boundary tubes
by some integer numbers of complete revolutions (see [W1] p.245). Twisting
the inner tubes can be accomplished by elementary Dehn twists about the �i

and these Dehn twists commute with all others. This braiding/twisting of the
inner boundary tubes is easily seen to be equivalent to specifying both a pure
braid (pure as h|�Ωn

= id) and an integer (the ‘framing coefficient’) for each
strand.

Let r ∈ Rn. The manifold W 4(r) is defined in [W1] p. 250 as follows. Embed
Ωn in S2 and extend h to all of S2 by the identity. Then, extend this map to a
self diffeomorphism of all of D3, calling the result H = H(r) (which is unique
up to isotopy). Letting W (H) be the mapping torus of H, W 4(r) is defined to
be W (H) union (n + 1) 2-handles attached canonically. Notice that W (H) is
diffeomorphic to D3 ×S1 ( = 0-handle ∪ 1-handle) as all orientation preserving
self diffeomorphisms of D3 are smoothly isotopic to the identity. We wish to
examine this construction more closely. The self diffeomorphism h of Ωn can
be realized, as described in the previous paragraph, in R

3 as Ωn × I with the
inner boundary tubes braided and twisted; the map h of Ωn is then obtained
by bending the twisted Ωn × I around and sticking the ends Ωn × 0 and Ωn × 1
together in the canonical way, exactly as one does to close a braid. To construct
H, one can first extend h to D2 by taking the twisted Ωn × I and filling in the n
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inner boundary tubes with n copies of D2 × I . One must take some care here.
For each boundary tube �i × I , i = 1, . . . , n, let pi be a distinguished point (see
Figure 9 ahead and [W1] p.225). Let ∗ be a distinguished point in �D2. Then,
when filling the ith boundary tube �i × I with D2 × I one must attach ∗ × I to
pi × I and fill with the identity at the ends �i × 0 and �i × 1. Now, h has been
extended to D2 and is concretely realized as D2×I by sticking the ends together
as when closing a braid; call this intermittent mapping torus M(h) which is
diffeomorphic to D2 × S1. Now, extending the map to D3 is trivial (again,
h|�Ωn

= id) and one immediately sees that the 2-handle attached corresponding
to �0 cancels the 1-handle from the open book construction. Moreover, this
cancellation occurs without disturbing the rest of the boundary of W (H). Thus,
we are left with a 0-handle (i.e. D4) with boundary S3 containing a very nice
copy of M(h). To obtain W 4(r) we now attach the remaining n 2-handles to D4

along the copies of D2 × S1 in M(h) in the canonical way.
Summarizing the previous two paragraphs, an Artin presentation r deter-

mines a framed pure braid β in R
3 (which is the same as in S3) and W 4(r) is

obtained from D4 by attaching 2-handles according to β. In the language of
the Kirby calculus, all W 4(r)s are ‘2-handlebodies’ ([GS], p.124). For more on
the manifolds W 4(r) see section 4.

Remark (2.1.1). One subtle but important distinction that must be made
here between an r ∈ Rn and a framed pure braid in S3 = �D4 is that in an
Artin presentation the framings are canonically included (they are not ‘put
in by hand’ as in the Kirby calculus) thus, e.g. avoiding serious self-linking
problems [Wi1], p.363. In fact, a moment of reflection by the reader should
reveal that without this ‘canonicity’ one would not obtain the purely group
theoretic analogue of Donaldson’s theorem [W1], p.240 Theorem 1, and its
important consequences. See also [W1], p.241 and [W3].

Hence, one tack to obtain an Artin presentation for a specific 4-manifold is
to obtain a surgery diagram for the manifold that is a framed pure braid in
S3 and then determine the corresponding Artin presentation from this framed
pure braid. Of course, saying an Artin presentation r gives a closed 4-manifold
X4 means that M3(r) = S3 and W 4(r)∪D4 = X4 (i.e. close up with a 4-handle).
We pursue this tack in sections 2.2-2.4 below. We abuse notation and say an
Artin presentation or a surgery diagram gives a closed 4−manifold when it
actually presents the closed manifold minus the interior of a 4-handle (which
can only be attached in one way, so there is no ambiguity).

We close this section by recalling useful knot theoretic structures in AP
Theory. The simplicity of these structures allows us to avoid doing surgery ‘by
hand’, avoids self-linking problems, etc. by use of a computer algebra system
such as MAGMA and significantly adds to the power of AP Theory. We point
out that, as usual, everything is group theoretic.

Fix r ∈ Rn, r = 〈x1, . . . , xn | r1, . . . , rn〉, with det A(r) = ±1, in particular
Σ3(r) is a Z-homology 3-sphere. There are n + 1 distinguished knots in Σ3(r)
that are defined by the boundary circles �0, . . . , �n of Ωn and we denote these
knots by k0, . . . , kn. Let ci denote the complement of ki in Σ3(r) and let Gi

denote the fundamental group of ci. Since A(r) is unimodular, A(r)−1 is also
a symmetric integer matrix and, in fact, is the linking matrix of the knots ki,
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i = 1, . . . , n. We let bij denote the ijth entry of A(r)−1 (abbreviating bii to just
bi) and let s =

∑
ij bij . In Σ3(r), the self linking number of k0 is s and of ki,

i 
= 0, is bi. We let mi, li denote the peripheral structure of the knot ki, which
consists of two special commuting elements in Gi, where mi is a meridian of ki

and li is homologically trivial in the complement of ki. Then, we have:

G0 = 〈x1, . . . , xn | r1 = r2 = · · · = rn〉,
m0 = any ri,

l0 = x1x2 · · · xnm−s
0 ,

and for i = 1, . . . , n we have:

Gi = 〈x1, . . . , xn | r1, r2, . . . , ri−1, ri+1, . . . , rn〉,
mi = ri,

li = xim
−bi

i .

Two remarks are in order. First of all, we get all knots and links in any arbi-
trary closed, orientable 3−manifold this way (González-Acuña unpublished).
Second, the definition given here of Gi for i 
= 0 appears to be slightly different
from that given in [W1], p.227, but in fact the two are equivalent (this was
pointed out to the second author by González-Acuña). This follows since the
Artin Condition (AC) implies that in Gi (definition given here) we have:

x1x2 · · · xn = x1x2 · · · xi−1(r−1
i xiri)xi+1 · · · xn,

which immediately implies that xi = r−1
i xiri in Gi. That is, (xi, ri) = 1 in Gi

(where (a, b) is MAGMA notation for the commutator a−1b−1ab), showing the
two definitions are equivalent. In fact, for i 
= 0, mi and li commuting in Gi is
equivalent to xi and ri commuting in Gi.

(2.2) Pure braid for E(n). Our starting point is the framed link diagram in
[HKK], p.66 (see also [GS], p.305) that presents a 2-handlebody with boundary
S3 and gives E(n) upon closing up with a 4-handle. (As mentioned earlier, we
abuse notation and say this diagram presents E(n) where no confusion should
arise.) By straightforward isotopy of the outer strand (the trefoil) we obtain
Figure 1. The two large bands both represent 6n−2 strands, each strand with
framing −2. A box containing ‘−1’ represents a twist of all strands (as when
twisting ribbon) in the direction corresponding to a negative crossing in our
orientation convention in Figure 8. We refer to the trefoil in Figure 1 as T and
to the small circle linking it as S, which have framings 0 and −n respectively.

All circles formed by closing a pure braid are individually not knotted, so
the first step is to unknot the trefoil T . To accomplish this, one performs a
2-handle slide on T ; in practice this corresponds to performing a band sum
of T with a parallel curve to another knot K representing the framing on K
(see [GS], pp.141-143). Here we slide T over the innermost circle in the left
large band using the trivial band as in Figure 2. One checks that the curve in
Figure 2 that T is being band summed with is a parallel curve to the innermost
strand and has linking number −2 with it (don’t forget the ‘−1’ box!). Let T ′

denote the result of 2-handle sliding T . Figure 3 is obtained from Figure 2 by
isotopy, in particular grab the part of T ′ in Figure 2 that hangs below the two
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Figure 1. Surgery diagram for E(n). The large bands represent 6n−2 strands
and all framings equal −2, except the trefoil T with framing 0 and the small
circle S linking it with framing −n.

large bands and swing it back and then up (other minor changes by isotopy
here should be obvious). Straightforward isotopy of Figure 3 produces Figure
4 where it is apparent that T ′ is not knotted.

It does not seem possible to isotop Figure 4 to a pure braid, so we perform
another 2-handle slide. This time, slide T ′ over the outermost strand in the
right large band (again using a trivial band to band sum with) as shown in
Figure 5. After a little isotopy one obtains Figure 6 (ignoring the hatched
rectangle for the moment). Let T ′′ denote the result in Figure 6 of sliding T ′

(S is unchanged).
Now, Figure 6 isotops nicely to a pure braid. To see this, take the hatched

rectangle in Figure 6, grab its upper left long boundary edge and pull it around,
making a rather large (ambient) expansion of the hatched rectangle into a large
backwards ‘C’ shape (the short dimension of the hatched rectangle extends

Figure 2. A 2−handle slide of T over the innermost curve in the left large
band using the indicated parallel curve and dashed band.
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Figure 3. The result T ′ of 2-handle sliding T .

and bends around). Except for S, one now has a pure braid. A little more
straightforward isotopy produces Figure 7, which is a pure braid for E(n). The
hatched rectangle does not appear in Figure 7, but one imagines it bending
around on the right-hand side to close the braid. Figure 7 contains a total
of 12n − 2 strands: the two large bands each represent 6n − 2 strands (each
strand therein has framing −2), the (12n − 3)rd strand (second from the right)
is T ′′, and the (12n − 2)nd strand (right-most) is S with framing −n.

It remains to determine the framing on T ′′ (this is the only one that changed),
which is calculated using the formula in [GS] p.142. The first 2−handle slide
results in T ′ with framing −2 since the relevant (signed, according to handle
addition or subtraction) linking number is 0. The second 2−handle slide re-
sults in T ′′ with framing still −2 since in this case the relevant signed linking
number (whose overall sign is independent of orientation choices) is equal to

Figure 4. The result of isotoping T ′ (and S), which is not knotted.
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Figure 5. A 2-handle slide of T ′ over the outermost curve in the right large
band using the indicated parallel curve and dashed band.

+1 implying ±2lk (·, ·) = +2. Thus, in the pure braid diagram for E (n) in Fig-
ure 7 all framings equal −2 except for the right-most strand which has framing
−n. In particular, for the Kummer surface E (2) all framings equal −2.

Remark (2.2.1). In Figure 1, the two large bands together form the compact-
ified Milnor fiber Mc(2, 3, 6n−1) with boundary the Seifert fibered Z-homology
3−sphere Σ(2, 3, 6n − 1) and the trefoil union the small circle linking it form
the Gompf nucleus N(n) (see [GS], sec. 3.1, 6.3, 7.3 and 8.3). It is clear from
the above that all Milnor fibers Mc(2, 3, 6n − 1) admit Artin presentations.

(2.3) An Algorithm. Given a framed pure braid in R
3, we wish to construct

the corresponding Artin presentation. To make this explicit, we must fix some
conventions. We will use β to denote both a braid and a framed braid, where
no confusion should arise. As usual, braids will be drawn as generic diagrams

Figure 6. The result T ′′ of 2-handle sliding T . The hatched rectangle will be
used to isotop to a pure braid.
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Figure 7. Pure braid for E(n). The large bands represent 6n − 2 strands
and all framings equal −2, except for the rightmost strand with framing −n.

in the plane with the strands ordered 1, 2, . . . , n from left to right. We read our
braids upwards, especially when composing them. In particular, each strand
is oriented up. For a pure braid β, Ci will denote the oriented circle consisting
of the ith strand and the trivial segment that would close that strand upon
closing the braid (the orientation is inherited from that of the corresponding
braid strand). Crossings in any oriented generic link diagram in the plane
are assigned a sign as in Figure 8. If C1 and C2 are two oriented circles in
a generic link diagram in the plane, then their linking number lk(C1, C2) is
defined to be the number of positive undercrossings of C2 under C1 minus the
number of negative undercrossings of C2 under C1. The linking number is well
defined and symmetric (see [GS] sec. 4.5). For an n-strand framed pure braid
β the linking matrix L(β) of β is the n × n symmetric integer matrix L where
Lij = lk(Ci, Cj) for i 
= j and equals the framing coefficient of Ci for i = j.
Similarly, one can define the linking matrix of any ordered oriented framed
generic link diagram in the plane.

(-) (+)

Figure 8. Crossing signs in an oriented link diagram.
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Figure 9. Ω22 with basepoints p0, . . . , p22 on boundary components
�0, . . . , �22. Also indicated is a generator x21 of π1(Ω22, p0).

Remark (2.3.1). If r ∈ Rn corresponds to β a framed pure braid then A(r) =
L(β). This follows from [W1], section 1 and [GS], p. 125. We note that orien-
tations/conventions fixed agree with both [W1] and [GS].

Any pure braid β ∈ Pn can be written as a product of Dehn twists about
simple closed curves in Ωn. Thus, we will need these three steps:

Step I. Given a pure braid β resulting from a single Dehn twist, determine
the corresponding Artin presentation.

Step II. Compose two Artin presentations.
Step III. Correct Framings.

Remark (2.3.2). Again, Step III is necessary since when going from a framed
pure braid (where framings are not canonically included) to an Artin presen-
tation (where framings are canonically included) an ad hoc framing correction
must be made at some point.

We describe these in detail.
Step I. First, π1(Ωn, p0) has canonical generators. Figure 9 shows Ω22 with

basepoint p0 and the generator x21 (the other generators are similar; see also
[W1] p. 225 and p. 244). Also depicted in Figure 9 are basepoints on the
boundary components �1, . . . , �22 (as referred to in section 2.1).

We use two examples to illustrate this step. For the first example, take the
Dehn twist depicted in Figure 10 about the oriented simple closed curve D1 (for

Figure 10. Ω22 with an oriented simple closed curve D1 and a small segment
laid across it.
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Figure 11. Ω22 with a loop representing r11, . . . , r20.

the moment ignore the small segment laid across D1). Usually one would take
a cylinder neighborhood S1 × [−1, 1] of D1 in Ω22 and replace it with a twisted
version (often a cut along D1 takes place) according to some fixed orientation
convention (see, for example, [GS] p.295). Following the motivation setforth
in section 2.1, we prefer to realize the Dehn twist canonically as an isotopy of
Ω22 in R

3 as follows. Start with a copy of Ω22 (as in Figure 10) laying flat on the
(possibly imaginary) table in front of you and a small cylinder neighborhood
N = S1×[−1, 1] of D1 in Ω22. The inner boundary curve of N bounds a compact
disk with 10 holes denoted Ω′

10. Slowly raise Ω22 up off the table and while
doing so grab Ω′

10 and slowly rotate it clockwise about a central point (with
the cylinder neighborhood N stretching like rubber) one complete revolution.
If one pictures the paths traced out by the center points of the 22 punctures
in Ω22 during this Dehn twist, one immediately sees the pure braid obtained
from Figure 7 with n = 2 by just taking the ‘−1’ box on strands 11 − 20 and
taking the remaining strands to be trivial. This Dehn twist, realized as an
isotopy, gives a self diffeomorphism h of Ω22 that is fixed on �Ω22, namely
the time 1 map of the isotopy. As discussed above in section 2.1 and [W1]
pp. 243–244, the automorphism h# of π1(Ω22, p0) ∼= F22 induced by h is of
the form xi �→ r−1

i xiri for some words ri and r = 〈x1, . . . , x22 | r1, . . . , r22〉
is our desired Artin presentation. The word ri is nontrivial (
= 1) only for
i = 11, . . . , 20 and these are all equal to one another. To compute r11, say, lay
a straight segment across D1 in front of �11 as in Figure 10 and follow the
segment through the isotopy above. After the isotopy, add two oriented edges
to the isotoped segment: one from p0 to the upper endpoint and one from the
lower endpoint to p0 as in Figure 11; the word in π1(Ω22, p0) represented by
this oriented loop is r11 = x−1

20 x−1
19 · · · x−1

11 .
We note two important points concerning the above example. First, it con-

veyed the orientation convention of Dehn twists used here, namely grab the
inner compact disk with holes and twist it in the direction of the arrow on the
curve one is twisting about. Second, the small segment laid across D1 formed
the ‘meat’ of the relations and only crossed D1 once. When computing ri in
general, one must choose this segment to traverse all occurrences of the curve
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Figure 12. Ω22 with an oriented simple closed curve D24 and three small
segments laid across it.

one is twisting about between a nice path (usually a straight line segment or
a small isotopy of one) from p0 to pi. This is shown in the following example.

For this example, take the Dehn twist depicted in Figure 12. The automor-
phism of F22 is clearly the identity on x1, . . . , x10, x22. Figure 13 shows the loop
representing both words r11 = r21 = x−1

21 x−1
11 (as the reader can verify using the

two small segments in Figure 12 that cross D24 once). The more interesting
relations are r12, . . . , r20, which are all equal to one another. To compute these
one must use a segment that crosses D24 twice, such as the middle segment in
Figure 12. The resulting loop is shown in Figure 14 and represents the word
x21x11x−1

21 x−1
11 . This completes Step I.

Step II. Our data is two Artin presentations r, r′ arising from Dehn twists
about D, D′ with corresponding h, h′ and h#, h′

#. Then, the composite Artin
presentation r′′ = r′ ◦ r is obtained using the formula (see [W1], p.245):

r′′
i = r′

i · h′
#(ri).

Step II is impractical by hand when the presentations are not small and use
of a computer algebra system, such as MAGMA, is invaluable.

Step III. Our data now is a framed pure braid β and an Artin presentation
r′ resulting from repeated applications of Steps I and II. One also has the

Figure 13. Ω22 with a loop representing r11 and r21.
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Figure 14. Ω22 with a loop representing r12, . . . , r20.

matrices L (β) and A
(
r′) which differ only possibly on their diagonals. One

corrects (see Remark (2.3.2) and Section 2.1) using the simple rule:

let δi = L(β)ii − A(r′)ii, and

let ri = xδi

i · r′
i.

The result is the Artin presentation r = 〈x1, . . . , xn | r1, . . . , rn〉 and A(r) =
L(β). We point out that when correcting framings one must multiply on the
left by the corresponding xδi

i , otherwise the resulting presentation is usually
not Artin. This completes Step III.

(2.4) Artin presentation of K3. Begin with the framed pure braid in Figure
7 with n = 2. Call this braid β and recall that all framings equal −2. We need a
series of Dehn twists producing β (ignoring framings for the moment). To take
care of β (reading up from the bottom) up until the point where the two large
bands first cross each other, perform Dehn twists about D1, D2, D3, and D4 (in
that order!) as in Figure 10 and Figures 15–17. (It may seem that the ‘−1’ on
the left band has been left off, but the reader should check that this is not the
case.) Now we attack the brunt of β consisting of the ‘Milnor fiber’ where the
two large bands cross each other and then intertwine. For this part we will need

Figure 15. Ω22 with an oriented simple closed curve D2.
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Figure 16. Ω22 with an oriented simple closed curve D3.

Figures 18 and 19 repeated in an alternating fashion. Figure 18 represents
D5, D7, D9, . . . , D23 where D5+2j , j = 0, 1, 2, . . . , 9, corresponds to Figure 18
with k = j + 1 and k′ = j + 11. Figure 19 represents D6, D8, D10, . . . , D22

where D6+2j, j = 0, 1, 2, . . . , 8, corresponds to Figure 19 with k = j + 1. Then,
one performs Dehn twists about the following ordered and oriented curves:
D5, D6, . . . , D22, D23. The reader should check that this series of Dehn twists
performs as claimed. To finish up, one twists about D24 as in Figure 12 and then
about D25 as in Figure 20. This series of Dehn twists gives β up to framings.

Now, using Step I from section 2.3, one writes down the Artin presentation
corresponding to each of the Dehn twists in this series. We organize this data
into a 25×22 array R of words in F22 where R[i, ·] corresponds to Di (i.e. R[i, j]
is the jth relation of the ith Artin presentation). Assume that R is initialized
as the 25 × 22 array of identity elements in F22. The nontrivial elements in R
are as follows.

R[1, i]

i = 11, . . . , 20 x−1
20 x−1

19 x−1
18 x−1

17 x−1
16 x−1

15 x−1
14 x−1

13 x−1
12 x−1

11

Figure 17. Ω22 with an oriented simple closed curve D4.
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Figure 18. Ω22 with an oriented simple closed curve D∗.

R[2, i]

x11x12x13x14x15x16x17x18x19x20

i = 1, . . . , 10 x−1
21 x−1

20 x−1
19 x−1

18 x−1
17 x−1

16 x−1
15 x−1

14 x−1
13 x−1

12 x−1
11

x−1
10 x−1

9 x−1
8 x−1

7 x−1
6 x−1

5 x−1
4 x−1

3 x−1
2 x−1

1

x−1
21 x−1

20 x−1
19 x−1

18 x−1
17 x−1

16 x−1
15 x−1

14 x−1
13 x−1

12 x−1
11

i = 21 x−1
10 x−1

9 x−1
8 x−1

7 x−1
6 x−1

5 x−1
4 x−1

3 x−1
2 x−1

1
x11x12x13x14x15x16x17x18x19x20

R[3, i]

x1x2x3x4x5x6x7x8x9

i = 1, . . . , 9 x11x12x13x14x15x16x17x18x19x20x21

x−1
20 x−1

19 x−1
18 x−1

17 x−1
16 x−1

15 x−1
14 x−1

13 x−1
12 x−1

11

x−1
9 x−1

8 x−1
7 x−1

6 x−1
5 x−1

4 x−1
3 x−1

2 x−1
1

x11x12x13x14x15x16x17x18x19x20

x−1
21 x−1

20 x−1
19 x−1

18 x−1
17 x−1

16 x−1
15 x−1

14 x−1
13 x−1

12 x−1
11

i = 10 x1x2x3x4x5x6x7x8x9

x11x12x13x14x15x16x17x18x19x20x21

x−1
20 x−1

19 x−1
18 x−1

17 x−1
16 x−1

15 x−1
14 x−1

13 x−1
12 x−1

11

x−1
20 x−1

19 x−1
18 x−1

17 x−1
16 x−1

15 x−1
14 x−1

13 x−1
12 x−1

11
i = 21 x1x2x3x4x5x6x7x8x9

x11x12x13x14x15x16x17x18x19x20x21

R[4, i]

i = 1, . . . , 9 x−1
9 x−1

8 x−1
7 x−1

6 x−1
5 x−1

4 x−1
3 x−1

2 x−1
1

Now, the relations R[5 − 23, i] lend themselves well to looping/shorthand
(which we utilize especially when using MAGMA). Let w = x−1

19 x−1
18 · · · x−1

11 and
let wj denote the first j letters of w read from the right for j = 0, . . . , 9. For
example, w0 = 1 (i.e. the identity in Fn) and w2 = x−1

12 x−1
11 . Then, R[5, i],

R[7, i], R[23, i] are defined by the following where j = 0, 1, . . . , 9 :
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Figure 19. Ω22 with an oriented simple closed curve D∗.

Figure 20. Ω22 with an oriented simple closed curve D25.

R[5 + 2j, i]

i = (j + 1), . . . , 10 xj+1xj+2 · · · x11+jwj

i = 11 + j wjxj+1xj+2 · · · x11+j

Also, R[6, i], R[8, i], R[22, i] are defined by the following where j = 0, 1, . . . , 8:

R[6 + 2j, i]

i = (j + 1), . . . , 10 x−1
10 x−1

9 · · · x−1
j+1

And the last two Artin presentations:

R[24, i]

i = 11, 21 x−1
21 x−1

11

i = 12, . . . , 20 x21x11x−1
21 x−1

11

R[25, i]

i = 21, 22 x21x22



80 J. S. CALCUT AND H. E. WINKELNKEMPER

The list of Artin presentations corresponding to the series of Dehn twists
given above is complete. Now, one simply composes these 25 presentations
(with MAGMA!) using a loop statement and the formula from Step II in section
2.3. Call the result of this iterated composition r′. To correct the framings, one
computes the exponent sum matrix of r′ (again using MAGMA) and checks the
diagonal of this matrix which is (starting from the upper left):

(−1, . . . , −1︸ ︷︷ ︸
9 times

, 0, −1, 0, . . . , 0︸ ︷︷ ︸
10 times

, 1)

To make these entries all equal −2, one corrects r′ using Step III calling the
result r. This is the desired Artin presentation for the Kummer surface K3.

After obtaining r with MAGMA, one immediately checks that the presen-
tation is in fact Artin. To do so, simply prompt MAGMA to compute the right
hand side of the Artin condition (AC). The result should be (and for our r
is) the left hand side of (AC). This is an important test, but it is also a test
that MAGMA can always carry out as the word problem in Fn is solved and
MAGMA must only freely reduce.

By construction, M3(r) is S3 and W 4(r) is K3. Despite the length of the
presentation r (which is given below) MAGMA readily verifies that π(r) = 1.
To look at W 4(r) one proceeds to A(r) which appears in Figure 21. This matrix
is even, unimodular, has 19 negative eigenvalues and 3 positive ones, hence is
Z-congruent to 2E8 ⊕ 3H as expected. One is now ready to reap the rewards
of this work. The Artin presentation r can be easily and orderly investigated
with MAGMA where nothing has to be done by hand and one doesn’t need to
worry about surgery diagrams, etc. Examples appear in the following section.

The inverse matrix of A(r), which appears in Figure 22, provides the periph-
eral structure of the knots ki, i = 0, . . . , 22, described at the beginning of this
section. Notice that the diagonal consists entirely of −2, 0, and 2, which as a
consequence immediately again gives Artin presentations for the appropriate
(1, ±1) Dehn spheres. Further, notice that the total sum of A(r)−1, denoted s,
equals −6, another computational advantage.

The knots ki are nontrivial only for i = 0, 10, 11, 21, 22; k10 and k11 are 52s,
k22 is a trefoil, and k21, with Alexander polynomial ∆ = t4 − t2 + 1, is a cable of
the trefoil. However, k0 has Alexander polynomial ∆ = t8−2t7−5t5 +13t4 −. . .
and is off the usual knot tables; its 2, 3, 4, 5 torsion is given by (29), (13, 13),
(15, 435), (251, 251).

It seems curious that here the only non-fibered knots are k10 and k11, pre-
cisely where the pair of 3s appears off the diagonal in A(r)−1 (Figure 22); see
also the end of section 2.1.

As R22 is a group, one may wish to compute r−1. To do so, one performs the
same series of Dehn twists as for r but in the reverse order and with reverse
orientation. One must repeat Step I for all of these Dehn twists and the work
is equivalent to the work involved with getting r. After doing so, one compares
the lengths of the relations in r and r−1 which appear below. (We use #r to
denote the total length of all relations.) We note that shorter presentations
are not necessarily more useful computationally, especially with MAGMA, as
one quickly finds.
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− − − − − − − − − −
− − − − − − − − − −
− − − − − − − −

2 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 11 1 1 1 1 1
1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

− −
− − − − − − − − − −
− − − − − − − − − −
−− − − − − − − − − −
− − − − − − − − − −
− −

1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 −− − − − − − − −
− − − − − − − − − −
− −

1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1
1 1 −− − − − − − − − −

− − − − − − − − − −
1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 11 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

−
− − − − − − − − − −
− − − − − − − − −11 1

1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

1

−
− − − − − − − − − −
− − − − − − − − − −

11 1 1 1 1 1 1 1 1 2 1 1 1 1
1 1 1 1 1 1 1 1 1 1 2 1 1 1

1 1 1 1 1 1

− − − − − − − − − −
− − − − − − − − − −
− − − −− − − − − − −
− − − − − − − − − −
− − − − − − − − − −

1 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 1 1 1 2
−− − −

−
1 1 2 1

1 2

Figure 21. A(r) for r representing the Kummer surface.

Relation r r−1 Relation r r−1

1 130 176 12 252 502

2 131 403 13 247 501

3 132 628 14 240 500

4 133 851 15 231 499

5 134 1072 16 220 498

6 135 1291 17 207 497

7 136 1508 18 192 496

8 137 1723 19 175 495

9 138 1936 20 156 494

10 644 2126 21 529 573

11 258 108 22 5 383

Total Relator Length
#r #r−1

4562 17260

In the following, we denote the just constructed r, r−1 by k3, k3−1. Let t1

be the Torelli of [W1] p. 228. If we multiply k3−1 “at 20 by t1” [W1] p.227,
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− − − − − −
− − − − − − −

− − − − − −

2 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1 1 1 1 −−
− − − − − − −

− − − − − −
− − − −

1 1
1 1 2 1 1 1 1 1 1 1 1 1 1 1

1 1 2 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 1 1 1 1 1 11 1 1 1
1 1 1 1 2 1 1 1 1 1 1 1 1 1

1 1 1 1 2 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 1

−
− − − − − −

− − − − − − −
− − − − −− − −

− − − − − − − −
− − − − − − − −

−

1 1 1 1 1 1
1 1 1 1 1 1 3 1 1 1 1 1 1 2 1
1 1 1 1 1 1 3 1 1 1 1 1 1 2 1

1 11 1 1 1 1 1 2 1 1 1 1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 1

1 1 1 1 1 1 1 1 1 2 1 1 1

− − − − − −
− − − − − − −

− − − − − −−
− − − − −
− − − − − −

− − − − − −

1
1 1 1 1 1 1 1 1 1 2 1 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 1 1 −−
− − − − − − −

− − − − − − −
− − −

2 1 1
1 1 1 1 1 1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 1 1 −− − −
− −
− −

1 1 1 1 2
2 2 2 1
1 1 1

Figure 22. The inverse matrix A(r)−1 providing the peripheral structures
of the knots k0, . . . , k22.

i.e. if we take the Artin presentation r ∈ R22 where ri equals 1 for i < 20 and
equals t1 written in the variables x20, x21, x22 for i = 20, 21, 22 and multiply
it by k3−1, we obtain an Artin presentation, which we denote by k3−1t1.20,
then π remains trivial and all knot groups stay the same except G0 whose
Alexander polynomial changes from ∆ = t8 − 2t7 − 5t5 + 13t4 − . . . to ∆ =
t10 − 8t9 + 14t8 − 2t7 − 13t6 + 15t5 − . . . (both polynomials are irreducible
and the new 2, 3, 4, 5 torsions are given by (9), (65, 65), (3, 3, 9), (899, 899)).
Assuming the latter homotopy 3-sphere is actually S3, we have two a priori
different smooth structures on the same underlying topological 4-manifold.
(Recall that the Torelli preserve A(r) and Freedman’s theorem holds if the
boundaries are the same).

Do these smooth structures differ due to, say, the arguments of Fintushel-
Stern [FS]?

To obtain another Artin presentation for the K3 surface, which we denote

by k3 and with inverse k3
−1

, we take the pure braid in Figure 7 with n = 2 and
modify it by an isotopy (the same modification applies to E(n) in general). Take
the portion of C21 that crosses under the right large band and intertwines with
the left large band and simply slide it down to the bottom of the braid and then,
using the (not drawn) trivial segments that close the braid, slide it around to
the top of the braid. The result is shown in Figure 23. Of course, the framings
for this braid are the same as before. Following Steps I-III above we obtain
k3. The isotopy of the braid preserved the order of the strands and hence the
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Figure 23. Modified pure braid for E(n).

matrix A(r) for this new presentation is exactly the same as before (Figure

21). For these Artin presentations we have #k3 = 6994 and #k3
−1

= 4398.

We note that k3
−1

is the shortest of the four Artin presentations given here
for the Kummer surface.

3. Examples

Thanks to the computer friendly, simple presentations of knot groups and
their peripheral structures in AP theory, examples therein need not be labori-
ously constructed: they just need to be systematically discovered with MAGMA.
Due to the ‘conical’, universal structure of AP theory, at least in principle this
can at least be done in a systematic, orderly, complete way. Thus, from the
beginning AP theory, due to the fact, e.g. that framings need not be put in by
hand, automatically and easily yields many of the known interesting exam-
ples of classical 3-manifold and knot theory: old and new. From the simplest
definition of Poincaré’s homology 3−sphere to examples pertaining to the Ca-
bling conjecture [GAS]. Specifically, at the very beginning [W1] AP theory
easily yields cosmetic surgery examples, Luft-Sjerve spheres with fixed point
free involutions, failure of Property R in general for Z-homology 3−spheres,
in particular giving boundaries of Mazur manifolds, and nontrivial knots in
homotopy 3−spheres with trivial Alexander polynomial, a phenomenon first
discovered by Seifert in the early 1930s.
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Using the just constructed Artin presentations of the K3 surface, we con-
tinue illustrating this natural, canonical flow of instructive examples.

If G is a group, by ab(G, n) we denote the abelianizations of the subgroups
of index ≤ n (up to conjugation) and we use MAGMA notation, e.g., ab(G, 4) =
1[0], 2[7, 0], 4[2, 2, 0], 4[0, 0], means that G abelianizes to Z and has, up to con-
jugation, one subgroup of index 2 which abelianizes to Z7 × Z, no subgroups of
index 3, and two subgroups of index 4 abelianizing to Z2 × Z2 × Z and Z × Z,
respectively.

By, say, k3−1st24, we denote the Artin presentation in R24 obtained by not
changing ri of k3−1 for i ≤ 22 and setting r23 = x23 and r24 = x24. It is clear
(see end of previous section) what, say, k3−1st24t3.22 ∈ R24 should be. By xm

i r
we denote the Artin presentation where ri is changed to xm

i ri. The Torellis
t1, t2, t3 ∈ R3 and T ′

4 ∈ R4 are as in [W1] pp.228,229,231. Furthermore, ∆i

denotes the Alexander polynomial of ki.
I. Regarding the Cabling Conjecture [GAS] in general. Consider Σ3(r) where

r = x−1
22 k3−1st24t3.22 ∈ R24 (#r = 17301); π(r) has a balanced (non-Artin)

presentation with just three generators:〈
a, b, c | c2 = bcb,

(
cbc

)−1
ab6 (

cbc
)−1

a−1b−1cbc =

b−6ab6 = b−2 (
cbc

)−1
a−1cbcb−6a

(
ba

)2
cbc

〉
,

and is therefore π-prime in the sense of [GAS], however, the (1, −1) Dehn sphere
of the knot k21 has fundamental group isomorphic to I(120) ∗ π1(Σ(2, 3, 11)).

Question: is this Dehn sphere homeomorphic to Σ(2, 3, 5)#Σ(2, 3, 11)?
The knot k21 has the same Alexander polynomial as that of the granny knot

in S3, but their knot groups differ since they have different ab ( , 5)s.
The (1, 1) Dehn sphere of the knot k3, where ∆3 = t2 − t + 1, is simply

connected and so Σ3 (r) is a (1, ±1) Dehn sphere of a knot k in a homotopy
3−sphere with Alexander polynomial ∆ = t2 − t + 1, but whose group G has a
different ab ( , 3) than that of the trefoil and is presented by:

G =
〈

a, b, c | bcb = cb2c, b
(

a,
(
b−1a

)
ˆ
(

b2 (
bc

)−1
c
(
cb

)−1
))〉

.

Here, recall that in MAGMA notation (x, y) = x−1y−1xy and xˆy = y−1xy. The
homology sphere Σ3 (r) is the quotient space of a free regular action of I (120)
on an M3 with H1

(
M3, Z

)
= Z

12
3 and ab (π (r) , 15) = ab (I (120) , 15), however

their ab ( , 20)s differ. The Casson invariant, λ
(
Σ3 (r)

)
, of Σ3 (r) is ±1.

Question: is G a knot group of S3?

II. Tinkering with our Artin presentations for K3 seems to give an abun-
dance of Z−homology 3−spheres with nontrivial knots where Property R fails,
i.e. G/ 〈l〉 = Z where l is the longitude.

i) k10,k11 of Σ3 (r) where r = x−1
1 x−1

22 k3−1t2.1 ∈ R22 (#r = 17916).
ii) k20, k22 of Σ3 (r) where r = x−1

18 k3−1T ′
4.19 ∈ R22 (#r = 37009) .

iii) k15, k22 of Σ3 (r) where r = x−1
20 k3−1t3.20 ∈ R22 (#r = 44913) .

iv) k10, k11 of Σ3(r) where r = x−1
18 k3−1t1.9 ∈ R22 (#r = 48643). Here,

ab(G10, 5) = 1[0], . . . , 5[0], 5[0, 0], 5[0, 0, 0], 5[2, 0, 0], 5[28371, 0]. The funda-
mental group of its (1, 1) Dehn sphere has one single subgroup of index 5 and
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it abelianizes to Z28371. Such large finite numbers have not appeared before in
computations in AP theory. What does their appearance mean?

v) The simplest example seems to be k22 of Σ3 (r) where r = x−1
20 k3−1st23t3.21

∈ R23 (#r = 27628) . Here π (r) and G22 are presented by:

π (r) =
〈

a, b | (
aba

)3
=

(
bab

)2
,
(
ba

)3
=

(
a−1bab

)2
〉

,

G22 =
〈

a, b | (
aba

)3
=

(
ba

)2 (
bab

)−1 (
ab

)2
〉

.

As is well known, the falsity of Property R, i.e. G/〈l〉 = Z, implies that
the Alexander polynomial is trivial; we also obtain an abundance of nontrivial
knots with trivial Alexander polynomials in homotopy 3-spheres (such exam-
ples were first discovered by Seifert in the early 1930s): let

r = x−1
20 k3−1st24t3.22 ∈ R24(#r = 17301),

then Σ3(r) is simply connected and ∆20 ≡ 1 but ab(G20, 5) = 1[0], . . . , 5[0], and
5[3, 15, 0] repeated 5 times; let r = x2k3t2.20 ∈ R22(#r = 11101), then Σ3(r) is
simply connected and ∆1 ≡ ∆12 ≡ 1 but ab(G1, 5) = ab(G12, 5) = 1[0], . . . , 5[0],
5[0, 0, 0], 5[3, 3, 0]. Here G12 is presented by:〈

a, b, c | (
a−1, c

) (
c, b

) (
a, b

)
c = b =

(
c−1, a−1) (

b, c−1) (
a, b

) (
c−1, a−1)〉 .

Question: is G12 a knot group of S3?

III. If r = k3−1t3.20 ∈ R22 (#r = 44550), then ∆1 ≡ 1 and ∆2 ≡ 1 but
G1 and G2 are not isomorphic since their ab ( , 5)s differ. However, both of
their (1, 1) Dehn spheres are simply connected. This illustrates in a different
way the phenomenon that ‘far away’ knots in homotopy 3−spheres can have
homeomorphic (1, 1) Dehn spheres [Br].

Unlike with the Donaldson matrices E8, ϕ4n, etc., with K3 we obtain a much
larger amount of knots with ∆ ≡ 1. Is this related to the ‘softness’ of K3 as a
Calabi-Yau manifold?

4. The manifolds W 4 (r)

We have answered in the affirmative whether all elliptic surfaces E (n) ap-
pear as W 4 (r)s. An open problem is whether every smooth, compact, con-
nected, simply-connected 4-manifold X4 with a connected, simply-connected
boundary �X4 = M3 is a W 4 (r). (See [GS] p.344 for a related problem).

In dimension 3, AP theory obtains all closed, orientable, connected 3-man-
ifolds and there seem to be no great conceptual difficulties on the horizon
in obtaining all Seiberg-Witten invariants of 3−manifolds in AP theory [L],
[T] pp.viii,115. Unlike in the simplicial combinatorial case, in AP theory the
same purely group-theoretic data that determines the 3−manifold, namely
r, also canonically and holographically determines the 4−manifold. Hence,
developing 3−dimensional Seiberg-Witten theory in this, its correct, ultimate
arena, holds greater promise in further developing also the outstanding open
4−dimensional theory in AP theory.

Similar arguments hold for studying the smoothings of a 4−manifold, à la
Fintushel-Stern [FS], using the action of the Torelli, thus generalizing their
important work. We remark that, if the 3D Poincaré conjecture were true, then
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by Freedman’s theorem the relation between the Torelli action and smoothings
would become even more direct, purely group-theoretic and pristine, perhaps
too much so.

Relevant to all of the above is that although finitely presented group theory
is considered a difficult subject, the undeniable metamathematical similarities
of AP theory with braid theory, holographic dessins ďenfant theory, as well as
numerous genuine analogies with Modern Physics, give hope for a definitive,
realistic, computer approachable, holographic, and universal approach to X4

theory [D] p.69, [W2], [W3].

Received January 09, 2003

Final version received August 18, 2003

Department of Mathematics

University of Maryland

College Park, MD 20742

USA

jsc3@math.umd.edu

hew@math.umd.edu

References

[AJ] M. Atiyah, and L. Jeffrey, Topological Lagrangians and cohomology, J. Geom. Phys. 7
(1990), 119–136.

[B] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Inv. Math.
132 (1998), 491–562.

[Br] W. Brakes, Manifolds with multiple knot-surgery descriptions, Math. Proc. Cambridge
Phil. Soc. 87 (3), (1980), 443–448.

[CS] S. Cappell, and J. Shaneson, Some new 4− manifolds, Ann. Math. 104 (1976), 61–72.
[Di] R. Dijkgraaf, Lectures on 4-manifolds and topological gauge theories, Nucl. Phys. B (Proc.

Suppl.) 45 B,C, (1996), 29–45.
[D] S. K. Donaldson, The Seiberg-Witten Equations and 4-manifold Topology, Bull. Amer.

Math. Soc. 33 (1996), 45–70.
[DS] S.K. Donaldson, and D. Sullivan, Quasiconformal 4-manifolds, Acta Math. 163 (1989),

181–252.
[E] N. Elkies, A characterization of the Z

n lattice, Math. Res. Lett. 2 (1995), 321–326.
[F] H. Feshbach, Group theory: Who needs it?, Physics Today, August 1986.
[FS] R. Fintushel, and R. Stern, Knots, links, and 4-manifolds, Inv. Math. 134 (1998), 363–

400.
[GH] R. Geroch, and J. Hartle, Computability and physical theories, Found. Phys. 16 (1986),

533–550.
[GS] R. Gompf, and A. Stipsicz, 4-manifolds and Kirby Calculus, Grad. Stud. Math. 20, Amer.

Math. Soc. 1999.
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