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SINGLE RATIONAL ARCTANGENT IDENTITIES FOR 7

JACK SAMUEL CALCUT III*

1. Introduction. The most common methods of calculating 7 to large numbers
of decimal places utilize an infinite sum for the arctangent function. All of these
infinite sums converge faster when the argument is small. 1 first began looking at
rational arctangent identities for m in 1991. Except for arctan(1) = m/4, all rational
arctangent identities for 7 use two distinct angles (e.g., arctan(1/2) 4+ arctan(1/3) =
w/4). T wondered why there was no known identity of the form n * arctan(z) = m,
where 1 is a large natural number and |z| is a small rational number, and whether such
an identity existed. The first major step towards generalizing these identities came
in October, 1995, when I independently discovered the pattern preceding Theorem 2.
This solved the problem for 7/4 only, however. 1 was convinced I could solve the
problem for all rational multiples of m. The next breakthrough came in September
1998 (at a bus stop no less). The final piece of the puzzle fell into place. This paper
contains both of these ideas and all supporting details.

2. Single Rational Arctangent Identities for m. We are interested in iden-
tities for 7 that determine a rational multiple of 7 with only one evaluation of the
arctangent function where the argument is rational.

DEFINITION 1. A single rational arctangent identity for m is any identity of the
form narctan(z) = kr where n is natural, x # 0 is rational and k is an integer.

It follows from the definition that k& # 0 since n,z # 0. Clearly every identity
of the form > arctan(z) = ¢, where n,m,b are natural, a # 0 is an integer, and
x # 0 is rational, reduces to a single rational arctangent identity for m, so we need
only generalize the latter. First, we derive a useful expression for tan(n arctan(z))

where n = 0,1,... and z is real. Recalling that
© tana +tan
tan(o + §) = 1—tanatan g’
we get:
0
tan(0 x arctan(z)) = I
tan(l = arctan(z)) = %
2z
tan(2 tan(zx)) =
n(2 x arctan(z)) -
T+ 3z—4°

tan(3 * arctan(z)) =

1—2.22, 1-327
3
T+ 3m—m2 4z — 4a®
tan(4 * arct = = t
(4 arctan(z)) = — pde=zr 1 - 6 + o

It appears that tan(n arctan(z)) = pn(x)/gn(z), where p,(z) is the sum of odd power
terms in binomial expansion with alternating signs, and ¢n(z) is the sum of even
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power terms in binomial expansion with alternating signs. That is:

———— [n/2)-1

(1) palz)= > (—1)1'(22,11) #H and g (x) = L%%J(—l)i@;)x%,

i=0 =0

where (}) = #lk), (the binomial coefficients).

Before we prove that equations (1) hold, recall that ("'kH) = (7 + ("), a
fundamental ingredient of the Pascal triangle, which can be easily proven by induction

[2].

THEOREM 2. tan(narctan(z)) is defined by equations (1) for all natural n and
real x.

Proof. We will proceed by induction on n. We have seen that equations (1) hold
true for n = 1,2,3,4. Assume (1) is true for all n < k. We must show (1) is true for

k + 1. There are two cases to consxder k gven and k odd. Suppose k is even. Then
k+ 11is odd. So =

pi(z)
T+ 0 van(@) +pil(z)

1 — z2e®) gi(x) — zpk(x)
qx(z)

tan((1 + k) arctan(z)) =

—1

() Rl )

=0 =0
1

i—_o o K;) " (2111 1>]$2i“ +(—1)Egkt

M .

M5

[STEa

-1

. k k _
-1 i+1 22
Hio( ) {(2i+2>+<2i+1>]x

(BTN 20
(=1 <2¢+1)$

Ty

[Nk

=0

> (1) ("5

as desired. The proof for k odd is virtually identical, as the reader may wish to verify.
0

(O

Note that Theorem 2 applies to all nonzero integral n, since if n < 0 then —n > 0
and tan(n arctan(z)) = — tan(—narctan(z)) = —p—n(x)/q-n(z).

It is transparent from Theorem 2 that p,(x) and g,(z) are rational for all integral
n and rational z. Clearly then, tan(narctan(z)) is rational for rational x provided
gn(z) #0.

We now apply Theorem 2 to /4.

THEOREM 3. If we have narctan(z) = /4 for some nonzero inlegral n, then the
only possible rational values for x are x = %1.

Proof. narctan(z) = § = tan(n arctan(x )) = Pn(2)/an(z) = 1 = pp(x) =
Gn(2) = gn(z) —pa(z) = 0 = 1= (Pz — (5)2? + (n"1 a" o =0.
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The only possible rational roots of this polynomial are z = -1 by the rational
root theorem. O

Theorem 3 characterizes all single rational arctangent identities for 7/4.

Before we characterize all single rational arctangent identities for all rational
multiples of 7, it is necessary that we make some observations. First, we look at
pn(l) and ¢n(1). From (1) we get: pi(1) = 1, pa(1) = 2, p3(1) = 2, pa(1) = 0,
q1(1) =1, ¢2(1) = 0, g3(1) = ~2 and ¢4(1) = —4.

Further inspection leads one to the following conjecture (where n = 4d+r, r < 4):

0, 7 =0(mod 4) (—4)3, n = 0(mod 4)

_ (=4)¢, n=1(mod 4 —4)* n = 1(mod 4)
Pall) =9 9(4)a’ 5= 2Em0d 43 and g, (1) =4 0 = 2mod 4
2(—-4)%, n = 3(mod 4) —2(=4)4, n = 3(mod 4)

Proving equations (2) hold is straightforward after we prove the next proposition.
PROPOSITION 4. pr11(1) = qr(1) + pr(1) and gr+1(1) = qr(1) — pa(1).
Proof. Case 1. (k is even) Then k + 1 is odd and

k k
2

prsa(1) = i(‘l)i@ill) = g(‘l)i [(221—1 1) i (i)]

=0 7
_ Z(_l)i (2/1 1) + i(—lf (i)

= pr(1) + g (1).
Also,

= ax(1) — px(1).

Case 2. (k is odd) The proof is virtually identical to Case 1, as the reader may
wish to verify. O

THEOREM 5. Fquations (2) hold for all natural n.

Proof. 'We will proceed by induction on n. We have seen that equations (2)
hold true for n = 1,2,3,4. Assume equations (2) hold for all n < k and write
k=4xd+r, r <4

Case 1. k = 0(mod4) implies p(1) = 0 and gx(1) = (—4)?. Proposition 4 implies
pr+1(1) = (=4)% and qey1(1) = (~4)% |

Case 2. k = 1(mod4) implies p(1) = (—4)¢ and gx(1) = (—4)¢. Proposition 4
implies pg41(1) = 2(—4)¢ and gr+1(1) = 0.

Case 3. k = 2(mod4) implies py(1) = 2(—4)¢ and gx(1) = 0. Proposition 4
implies pr+1(1) = 2(—4)¢ and g1 (1) = —2(—4)%.



4 JACK SAMUEL CALCUT III

Case 4. k = 3(mod4) implies px(1) = 2(—4)% and gx(1) = —2(—4)¢. Proposition 4
implies pry1(1) = 0 and gp1(1) = (—4)41. 0

Now, we notice that for a single rational arctangent identity for = narctan(z) =
kn if and only if 0 = tan(narctan(z)) = pn(z)/gn(z), which occurs if and only if
pn(z) = 0 and ¢,(z) # 0. We are inclined to conjecture that if p,(z) = 0 and z is
rational then « = 0 or &1, however, it is not at all clear how to prove this straightaway
for all natural n. The key is to first prove it is true for all prime n > 0.

THEOREM 6. If we have n > 0 prime and z rational such that p,(x) = 0 then
z =0 or£1.

Proof. We first prove the result for n = 2 and then for all n > 2. Assume n = 2,
then 0 = po(z) = 22 = = = 0 as desired. Now, assume n > 2 and prime, then n is
odd. So,

pn(z) = 0= Z}—l)" (2/1 1) 22 =0

n 3 [ 5 n n—2 n
_ — siea + —
= ne (3):1: —|—<5>x :F<n_2)x x 0
— — n 2 n 4 _ ... n n—3 n—1 _
=zx=0o0rn <3>x —|—<5)x :F<n_2>a: +x 0

sgx==2lor £n

by the rational root theorem since n is prime. Suppose # = =£n is a root, then
nt (g)n2 Tt l=0=14 (g)nl F---4+n"2 = 0, but the only possible rational
roots of this polynomial are =1 = n = £1. But this contradicts the assumption that
n > 2. Hence, z = 0 or 1. O

Next, we show that we can solve the problem for narctan(z) = aw, where n is
composite, by “stepping down” by prime factors of n.

THEOREM 7. Ifn > 1 natural and x is rational such that tan(n arctan(z)) = 0
then ¢ =0 or £1.

Proof. n has a prime factorization, say n = s183---s;, where each s; > 1 and
the s;’s are not necessarily distinct. We will proceed by induction on j. First assume
j = 1. If = is a rational such that tan(s; arctan(z)) = 0 then p,,(z) = 0 and
gs;(z) # 0 and & = 0 or 1 by Theorem 6. Now, assume true for all j < h. Let
n be some natural such that n = 8155 - -+ sy, where each s; > 1 and the s;’s are not
necessarily distinct. Further, let z be some rational such that tan(n arctan(z)) = 0
and write ¢ = sg - - - s, arctan(x). Then we have:

0 = tan(narctan(z)) = tan(s152 - - - s arctan(z)) = tan(s1¢) =

which implies that ps, (tan¢) = 0 and g,, (tan) # 0. Now, (s2---sp) is a natural
number and z is rational, so tan(¢) is defined by equations (1) by Theorem 2. Hence,
tan(¢) is either rational or undefined. If tan(¢) is undefined then ps, (tan¢) # 0, a
contradiction. Therefore, tan(¢) is rational, say ¥ = tan(¢). Then we have ps, (y) =0
where 7 is rational and s; > 1 is prime, so y = 0 or 1 by Theorem 1-5%.Suppose

y = %1, this implies that +1 Y tan(¢) = tan(sy--- sy arctan(z)). But then

z = %1 by the proof of Propositien—t Therefore, suppose y = 0, this implies 0 =
y = tan(¢) = tan(sg - - - sp arctan(z)), where sz -+ sp is a natural number composed
of h — 1 < h primes. Hence, z = 0 or 1 by the inductive hypothesis. 0
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Now, we combine our results and g‘eﬁmﬁz@ all single rational arctangent identities
for .

THEOREM 8. The following are equivalent:

(i) narctan(z) = ar is a single rational arctangent identity for .
(ii) z = £1 and n = 0(mod 4), where n is natural.

Proof. First, we prove (i) = (ii). Assume (i) is true. Then by definition n
is natural, z # 0 is rational and a # 0 is an integer. Then narctan(z) = ar =
tan(narctan(z)) = 0 and £ = £1 by Theorem7 (z # 0 by definition). So, we have
tan(narctan(+1)) = 0 = tan(narctan(1)) = 0 = p,(1) = 0. By equations (2), we
have that n = 0(mod 4).

Now we prove (ii) = (i).

Assume (ii) is true. If z = —1, then py(x) = pp(—1) = —pn(1) and q,(z) =
¢n(—1) = gn(1) by equations (1). Furthermore, p,(1) =0 ar;d qn(1) 7<é ()) by equations

L pa(z) _ po(£) _ £pa(l
(2), which implies that tan(n arctan(z)) = (@)~ an(ED) an(D)
narctan(z) = arctan(0) = kn for some integer k. Since arctan(z) = arctan(£1) =
+7/4, we have that +nw/4 = kr = k = £n/4 # 0. 0

= 0. Hence,

3. Conclusion. We have seen that there does not exist a single rational arct-
angent identity for 7, hence for any rational multiple of 7, that converges faster than
arctan(l) = 7/4. To obtain faster convergence using rational arctangent identities,
one must make at least two distinct arctangent evaluations. The logical continuation
would be to generalize identities for 7 that use two arctangent evaluations.

After the completion of the work presented here, it was found that Gauss had
done just that, but only for 7/4, 27 /4, and 37/4. Gauss’ method is outlined in Wrench
[4], the key relation being:

1 14z
3 t =—1
(3) arctan(z) 5; In <1 —ix)

However, using equation (3) to prove the result of this paper only leads one to the
polynomials in (1). To see this, suppose narctan(z) = ax is a single rational arct-

angent identity for m. Equation (3) implies that % In << + mc) ) = ar. Now, we
i

1—1iz
use the fact that:

Le — 1 9io 141z
_re -1 o _ >+ T%
tan(¢)—ie2i¢+l_z:>e T
t0 see that:
Jn((izz)m) _ Ltitan(am))

1 —i(tan(am))

. ko3

1+Z> — 1, which implies that (1 + iz)™ — (1 — iz)"” = 0.
The Binomial Theorem and some simplification shows that (14 iz)™ — (1 —iz)* =0
is exactly equivalent to p,(x) = 0. It should be mentioned that even the best rational
arctangent identities for = have their limitations. Using logarithms it is easy to see
that each iteration of the Gregory series for arctan(z), where |z| < 1 and = # 0,
yields approximately |2log,,(z)| more digits accuracy, which is linear in log,y(z).
There are recursive formulas for © based on elliptic integrals that have quadratic,

cubic, quadruple, and septet convergence rates. The interested reader may refer to
Kanada [1].

Simplifying gives us <
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In Memoriam.

A. D. Stewart. Pi Mu Epsilon notes with sadness the passing of A. D. Stewart,
Councilor from 1978-1984 from Prairie View A & M University in Prairie View, Texas.
A. D. Stewart was a gentle man who could always be counted upon as a valuable pres-
ence at Pi Mu Epsilon meetings. His loosely knotted tie and warm smile were always
recognizable characteristics. Prof. Stewart encouraged his students from Prairie View
A&M to be active mathematically on campus and to take part in the national PME
meetings. He was a loyal IIME supporter and will be very much missed.

Robert G. Kane. Professor Robert G. Kane, Associate Professor of Mathemat-
ics and Computer Science at the University of Detroit Mercy (Michigan Beta chapter),
died July 12 at age 65. Professor Kane was the moderator of Michigan Beta chapter,
Pi Mu Epsilon, for many years. He taught mathematics at the University of Detroit
(pre-merger) since 1957.
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