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Abstract. González-Acuña showed that Artin presentations characterize closed, ori-
entable 3-manifold groups. Winkelnkemper later discovered that each Artin presentation
determines a smooth, compact, simply-connected 4-manifold. We utilize triangle groups
to find all Artin presentations on two generators that present the trivial group. We then
determine all smooth, closed, simply-connected 4-manifolds with second betti number at
most two that appear in Artin presentation theory.

1. Introduction

An Artin presentation is a group presentation r = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉 such
that the following holds in the free group Fn = 〈x1, x2, . . . , xn〉

x1x2 · · ·xn = (r−1
1 x1r1)(r

−1
2 x2r2) · · · (r

−1
n xnrn)

González-Acuña [Gon75, Thm. 4] showed that every closed, orientable 3-manifold admits
an open book decomposition with planar page. As a corollary, he obtained the following
algebraic characterization of 3-manifold groups.

Theorem (González-Acuña [Gon75, Thm. 6]). A group G is the fundamental group of a
closed, orientable 3-manifold if and only if G admits an Artin presentation r for some n.

Winkelnkemper [Win02, p. 250] discovered that each Artin presentation r determines not
only a closed, orientable 3-manifold M3(r) but also a smooth, compact, simply-connected
4-manifold W 4(r) such that ∂W 4(r) = M3(r). All intersection forms are represented by
some W 4(r) [Win02, pp. 248–250]. If M3(r) is the 3-sphere, then we consider the smooth,
closed, simply-connected 4-manifold X4(r) =W 4(r)∪∂ D

4 obtained from W 4(r) by closing
up with a 4-handle.

While all closed, orientable 3-manifolds appear in Artin presentation theory, it is un-
known which 4-manifolds appear as a W 4(r) or an X4(r). The only contractible manifold
W 4(r) is D4 (when r = 〈|〉 is the empty Artin presentation). So, no Mazur manifold appears
as aW 4(r). Nevertheless, there are no known smooth, closed, simply-connected 4-manifolds
that do not appear as an X4(r); many interesting closed 4-manifolds are known to appear
this way including all elliptic surfaces E(n) where E(2) is diffeomorphic to the Kummer
surface K3 [CW04].
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We determine all closed 4-manifolds X4(r) where r is an Artin presentation on two gen-

erators. (For n = 0 and n = 1, the problem is straightforward: only S4, CP 2, and CP 2

appear.) Theorem 4.2 gives the complete list of these manifolds: CP 2 #CP 2, CP 2 #CP 2,

CP 2 # CP 2, and S2 × S2. Exotic simply-connected, closed 4-manifolds are currently not
known to exist with second betti number ≤ 2. Theorem 4.2 shows that such manifolds,
whether or not they exist in general, do not appear in Artin presentation theory. Exotic
4-manifolds do appear in Artin presentation theory with second betti number ≥ 10 [Cal08].
We conjecture that closed, exotic 4-manifolds appear in Artin presentation theory with sec-
ond betti number three, and that this relates to the Torelli subgroup in Artin presentation
theory (see [Win02, p. 250] and [Cal08]).

Our proof of Theorem 4.2 uses the classification of Artin presentations on two generators
and properties of classical triangle groups to find all Artin presentations on two generators
that present the trivial group. We then introduce a move on Artin presentations on two
generators which preserves the 4-manifolds. Using this move and the Kirby calculus, we
then identify the 4-manifolds. It would be interesting to find other such moves in Artin
presentation theory. Armas-Sanabria has shown certain three generator Artin presentations
present nontrivial groups [Arm12].

For each nonnegative integer n, let Rn denote the set of Artin presentations on n gener-
ators. We include a proof of the folklore theorem (see [Win02, p. 245] and [Gon75, p. 10])
that Rn is a group isomorphic to the product Pn ×Z

n of the pure braid group Pn with the
rank n free abelian group.

Throughout, X ≈ Y means that X is orientation preserving diffeomorphic to Y . If X is
an oriented manifold, then X denotes the same manifold with the opposite orientation.
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2. Artin Presentations

In this section, we review fundamental properties of Artin presentations and fix notation.
We begin by recalling how each Artin presentation arises naturally from a homeomorphism
of a compact 2-disk with holes.

Let Ωn denote the compact 2-disk with n holes as in Figure 2.1. The boundary com-

p 0

p 1 p 2 p 3

∂ 1 ∂ 2 ∂ 3

∂ 0

s 1
s 2 s 3

Ω 3

Figure 2.1. Compact 2-disk with n holes denoted Ωn (the case n = 3 is depicted).
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ponents ∂0, ∂1, . . . , ∂n of Ωn are parameterized clockwise and are based at p0, p1, . . . , pn
respectively. For each 1 ≤ i ≤ n, let si be an oriented segment from p0 to pi as in Fig-
ure 2.1. Given a path α, let α denote the reverse path and let [α] denote the path homotopy
class of α. Concatenation of paths—performed left to right—and the induced operation on
classes will be denoted by juxtaposition. For each 1 ≤ i ≤ n, let xi = [si∂isi] as in Fig-
ure 2.2. So, π1 (Ωn, p0) ∼= Fn = 〈x1, x2, . . . , xn〉 is free of rank n.

x 2

x 3

g 1 g 2 g 3

x 1

Figure 2.2. Generators xi of π1 (Ω3, p0).

Let h : Ωn → Ωn be a homeomorphism that equals the identity (point-wise) on the
boundary of Ωn. Then, the induced homomorphism h♯ : π1 (Ωn, p0) → π1 (Ωn, p0) is an
automorphism. For each 1 ≤ i ≤ n, define ri = [si(h ◦ si)] ∈ Fn. Define the presentation
r = r(h) = 〈x1, x2, . . . , xn | r1, r2, . . . , rn〉.

Claim 2.1. For each 1 ≤ i ≤ n, we have h♯(xi) = r−1
i xiri.

Proof. Note that h ◦ si = h ◦ si, r
−1
i = [(h ◦ si)si], and h ◦ ∂i = ∂i. Therefore

h♯(xi) = [h ◦ (si∂isi)] = [h ◦ si] [h ◦ ∂i] [h ◦ si]

= [h ◦ si] [si] [si] [∂i] [si] [si] [h ◦ si]

= r−1
i xiri

�

Claim 2.2. The presentation r = r(h) determined by h is an Artin presentation.

Proof. The following holds in Fn

x1x2 · · ·xn = [∂0] = [h ◦ ∂0]

= h♯(x1x2 · · ·xn) = h♯(x1)h♯(x2) · · ·h♯(xn)

= (r−1
1 x1r1)(r

−1
2 x2r2) · · · (r

−1
n xnrn)

where the last equality used Claim 2.1. �

Let Homeo (Ωn, ∂Ωn) denote the group of homeomorphisms of Ωn that equal the identity
(point-wise) on ∂Ωn. By Claim 2.2, we have a function

ψ : Homeo (Ωn, ∂Ωn) → Rn

given by ψ (h) = r(h). If h and h′ are isotopic relative to ∂Ωn, then ψ(h) = ψ(h′). We will
show that ψ is a surjective homomorphism of groups. First, we present a few examples.
Given an Artin presentation r ∈ Rn, we define π(r) to be the group presented by r and
A(r) to be the exponent sum matrix of r meaning [A(r)]ij equals the exponent sum of xi
in rj . Note that A(r) is an n × n integer matrix, the abelianization of π(r) is isomorphic
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to Z
n/ImA where ImA denotes the image of A : Zn → Z

n, and π(r) is perfect if and only
if A(r) is unimodular (that is, detA = ±1).

Examples 2.3.

(1) The empty presentation ε = 〈|〉 is the unique Artin presentation in R0. Here, π(ε) is
trivial and A(r) = [] is empty.

(2) The Artin presentations associated to Tc and T−1
c in Figure 2.3 are 〈x1 | x1〉 and

〈

x1 | x
−1
1

〉

respectively. Given a homeomorphism h ∈ Homeo (Ωn, ∂Ωn), one computes

c

Figure 2.3. Simple closed curve c in Ω1 (center), result of right Dehn twist
Tc about c (right), and result of left Dehn twist T−1

c about c (left).

the associated Artin presentation r = ψ(h) as follows. Recall Figures 2.1 and 2.2. The
relation ri is obtained by starting at pi, following h(si), and recording xj (respectively

x−1
j ) each time gj is crossed from left to right (respectively right to left).

(3) Each r ∈ R1 has the form r = 〈x1 | x
a
1〉 for some integer a. Here, π(r) ∼= Z/ |a|Z and

A(r) = [a].
(4) Let a1, a2, . . . , an be any integers. Then, r = 〈x1, x2, . . . , xn | xa11 , x

a2
2 , . . . , x

an
n 〉 is an

Artin presentation in Rn that presents the free product of cyclic groups Z/ |ai|Z.
(5) The Artin presentations associated to Tc and T

−1
c in Figure 2.4 are 〈x1, x2 | x1x2, x1x2〉

and
〈

x1, x2 | x
−1
2 x−1

1 , x−1
2 x−1

1

〉

respectively.

c

Figure 2.4. Simple closed curve c in Ω2 (center), result of right Dehn twist
Tc about c (right), and result of left Dehn twist T−1

c about c (left).

(6) Each r = 〈x1, x2 | r1, r2〉 ∈ R2 has the form r1 = xa−c
1 (x1x2)

c and r2 = xb−c
2 (x1x2)

c for
some integers a, b, and c (see [Cal07, p. 360] and [Win02, p. 245]). We denote such

an Artin presentation by r(a, b, c), so A(r(a, b, c)) =

[

a c
c b

]

. For instance, r(−1,−3, 2)

presents the binary icosahedral group I(120). We mention that π(r(a, b, c)) ∼= π(r(−a,−b,−c))
by the map xi 7→ xi.

Remark 2.4. For each n, Rn has a natural binary operation. Namely, let r, u ∈ Rn.
Define the composition u ◦ r to be the presentation t = 〈x1, x2, . . . , xn | t1, t2, . . . , tn〉 as
follows: let Ri be obtained by substituting u−1

j xjuj for xj in ri, and define ti = uiRi.
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We now show that t ∈ Rn provided r, u ∈ Imψ (shortly, we will see that Imψ = Rn,
which means this operation is defined on all of Rn). Let h, k ∈ Homeo (Ωn, ∂Ωn) such that
ψ(h) = r and ψ(k) = u. For each 1 ≤ j ≤ n, Claim 2.1 implies that h♯(xj) = r−1

j xjrj and

k♯(xj) = u−1
j xjuj . So, for each 1 ≤ i ≤ n, we have

(k ◦ h)♯ (xi) = k♯ (h♯(xi)) = k♯
(

r−1
i xiri

)

= k♯(ri)
−1u−1

i xiuik♯(ri)

= (uik♯(ri))
−1 xi (uik♯(ri))

= (uiRi)
−1 xi (uiRi)

= t−1
i xiti

Thus
x1x2 · · ·xn = (k ◦ h)♯ (x1x2 · · ·xn) = (t−1

1 x1t1)(t
−1
2 x2t2) · · · (t

−1
n xntn)

and so t = u ◦ r ∈ Rn. Summarizing, ψ| : Homeo (Ωn, ∂Ωn) → Imψ is surjective, the
domain is a group, the codomain is a set with a binary operation, and ψ respects the
operations—meaning ψ(k ◦ h) = ψ(k) ◦ ψ(h). These facts imply that Imψ is a group and
ψ| is a surjective homomorphism. Note that each Artin presentation in the examples above
lies in Imψ. The identity in Imψ is 〈x1, x2, . . . , xn | 1, 1, . . . , 1〉.

Let Dn denote the compact 2-disk with n ≥ 0 marked points q1, q2, . . . , qn in its interior
as in Figure 2.5. We choose qi to lie at the center of the simple closed curve ∂i and let

p 0

q 1 q 2 q 3

D 3

Figure 2.5. SurfaceDn that is the compact 2-diskD2 with nmarked points
q1, q2, . . . , qn in its interior (the case n = 3 is depicted).

Q = {q1, q2, . . . , qn}. Let D
2 −Q be the 2-disk with n ≥ 0 punctures.

Claim 2.5. The function ψ is surjective. Hence, ψ : Homeo (Ωn, ∂Ωn) → Rn is a surjective
homomorphism of groups.

Proof. Let t ∈ Rn. It suffices to prove that t ∈ Imψ since then the second conclusion
follows from Remark 2.4. Define the endomorphism β : Fn → Fn by xi 7→ t−1

i xiti. By
Artin1 [Art25, pp. 64–68], the map β is a pure braid group automorphism of Fn. So, there
exists a homeomorphism h′ of D2 −Q that is a product of homeomorphisms corresponding
to braid group generators such that: h′ is the identity on ∂D2, h′ sends each puncture to
itself (by purity of β), and h′♯ = β. Further, we can and do assume that the restriction

h of h′ to Ωn equals the identity on ∂Ωn. Hence, h ∈ Homeo (Ωn, ∂Ωn) and h♯ = β. Let

1Artin’s beautiful algebraic argument appeared originally in German and later in English [Art47, pp. 114–
115]; Birman gave an exposition of Artin’s argument in her book [Bir75, Thm. 1.9, p. 30].
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r = ψ(h) ∈ Rn. For each 1 ≤ i ≤ n, h♯(xi) = r−1
i xiri by Claim 2.1. So, t−1

i xiti =

r−1
i xiri and xi

(

tir
−1
i

)

=
(

tir
−1
i

)

xi. Commuting elements in Fn are powers of the same

word [MKS76, p. 42]. Thus, tir
−1
i = xaii for some integer ai, which implies ti = xaii ri.

Define u = 〈x1, x2, . . . , xn | xa11 , x
a2
2 , . . . , x

an
n 〉 ∈ Rn. By the examples above, there exists

k ∈ Homeo (Ωn, ∂Ωn) such that ψ(k) = u. As u−1
j xjuj = xj for each 1 ≤ j ≤ n, we have

t = u ◦ r ∈ Imψ as desired. �

Remark 2.6. Let Mat(n,Z) be the additive group of n×n integer matrices. The function
A : Rn → Mat(n,Z) is a homomorphism—meaning A(u ◦ r) = A(u) + A(r). To see this,
note that u ◦ r ∈ Rn by Claim 2.5. By definition, [A(u ◦ r)]ij equals the exponent sum

of xi in ujRj where Rj is obtained from rj by substituting u−1
k xkuk for xk. Therefore,

[A(u ◦ r)]ij = [A(u)]ij + [A(r)]ij as desired.

Let Homeo0 (Ωn, ∂Ωn) be the subgroup of Homeo (Ωn, ∂Ωn) consisting of homeomor-
phisms (fixed point-wise on ∂Ωn) that are isotopic relative to ∂Ωn to the identity.

Claim 2.7. The kernel of ψ equals Homeo0 (Ωn, ∂Ωn).

Before we prove Claim 2.7, we need a technical lemma. Incidentally, this lemma is
the reason we may—and typically do—assume the individual relations ri in each Artin
presentation r are freely reduced (see also [Cal07, pp. 363–365]).

Lemma 2.8. Let h be a diffeomorphism of Ωn fixed point-wise on ∂Ωn. Assume that the
arcs h(si) meet the segments gj (see Figure 2.2) in general position. Suppose some h(si)
crosses some gj (j = i is possible) at the point a and then, without crossing any other
segment gk, h(si) crosses gj in the opposite direction at the point b as in Figure 2.6. Then,

γ

a

g j

b

σ

σ

∆

g j

Figure 2.6. Arc h(si) meeting gj consecutively in opposite directions with-
out meeting any segments gk in-between (left) and result of isotopy pushing
σ across ∆ to a parallael copy of γ (right).

there is an isotopy of h relative to ∂Ωn that eliminates the crossings a and b. This isotopy
introduces no new crossings between the arcs h(sk) and gl, though it may eliminate other
crossings (in case some h(sk) meets γ).

Proof of Lemma 2.8. Let γ and σ be the arcs between a and b in gj and h(si) respectively.
So, C = γ ∪ σ is a simple closed curve in IntΩn. By the Schoenflies theorem, C bounds a
2-disk ∆ ⊆ IntD2. We show ∆ is disjoint from ∂Ωn. As ∆ ⊆ IntD2, ∆ is disjoint from ∂0.
Suppose, by way of contradiction, that ∆ meets ∂k for some 1 ≤ k ≤ n. Then, ∂k ⊆ Int∆
by connectedness. If k 6= j, then the segment gk must meet C by the Jordan Curve Theorem
JCT. Hence, gk meets σ which contradicts the hypotheses on h(si). Next, assume k = j.
Observe that the segment gj begins on ∂j in Int∆. Also, an open segment of gj ending
at the lower point a or b (a in Figure 2.6) does not lie in ∆. Therefore, gj must meet σ
at a point other than a or b by the JCT. Again, this contradicts the hypotheses on h(si).
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Therefore, ∆ ∩ ∂Ωn = ∅ and ∆ ⊆ IntΩn. The isotopy is now obtained by pushing σ across
∆ to a parallel copy of γ as in Figure 2.6. �

Proof of Claim 2.7. Let h ∈ kerψ, and let r = ψ(h). By an isotopy of h relative to ∂Ωn,
we can and do assume h is a diffeomorphism and the arcs h(si) meet the segments gj in

general position. As h ∈ kerψ, each ri = 1 which means ri freely reduces to 1. Let x±1
j x∓1

j

be adjacent letters in some ri (j = i is possible); this corresponds to h(si) crossing some
gj and then, without crossing any other segment gk, crossing gj in the opposite direction.
By Lemma 2.8, an isotopy of h relative to ∂Ωn eliminates these crossings. Repeating this
operation finitely many times, we may assume that the arcs h(si) are disjoint from the
segments gj . By a small isotopy of h relative to ∂Ωn, we may assume height restricts to a
Morse function on the arcs h(si) with distinct critical values. The minimal local maximum
of height on h(s1) may be ambiently cancelled with an adjacent local minimum (see [CKS12,
pp. 1845–1852], especially Figure 11). Repeating this operation finitely many times, the
arc h(s1) has strictly increasing height. By integrating an appropriate horizontal vector
field on Ωn, we may assume h(s1) = s1. Integrating a vector field tangent to s1, we may
assume h also equals the identity on s1. One may repeat this procedure on s2—without
disturbing s1—and so forth. Thus, we have h is a diffeomorphism of Ωn equal to the
identity on ∂Ωn and on the segments si for 1 ≤ i ≤ n. Cutting Ωn open along the arcs si, h
becomes a homeomorphism of the 2-disk equal to the identity on boundary. By Alexander’s
trick [FM12, 47–48], this homeomorphism is isotopic to the identity relative to boundary.
This latter isotopy induces an isotopy relative to ∂Ωn of h to the identity. �

The mapping class group of Ωn is

Mod (Ωn) = Homeo (Ωn, ∂Ωn) /Homeo0 (Ωn, ∂Ωn)

For useful equivalent definitions of Mod (Ωn), see [FM12, pp. 44–45]. Claims 2.5 and 2.7
immediately imply the following.

Corollary 2.9. The function Mod (Ωn) → Rn given by [h] 7→ ψ(h) is an isomorphism.

Recall from Figure 2.5 above that Dn is the compact 2-disk with n marked points in its
interior. The mapping class group of Dn is

Mod (Dn) = Homeo (Dn, ∂Dn) /Homeo0 (Dn, ∂Dn)

where homeomorphisms and isotopies fix ∂Dn = S1 point-wise and the marked points
may be permuted [FM12, p. 45]. The pure mapping class group PMod (Dn) is the sub-
group of Mod (Dn) that fixes each marked point individually [FM12, pp. 90]. Let Bn

denote the classical n strand braid group and Pn denote the n strand pure braid group.
There are canonical isomorphisms Bn

∼= Mod (Dn) and Pn
∼= PMod (Dn) [FM12, pp. 243–

249]. Recall that D2 − Q is the 2-disk with n punctures. One may regard marked
points as punctures (see [FM12, p. 45]) in the sense that there are canonical isomorphisms
Mod (Dn) ∼= Mod

(

D2 −Q
)

and PMod (Dn) ∼= PMod
(

D2 −Q
)

.

Claim 2.10. There is a canonical isomorphism Mod (Ωn) ∼= Pn × Z
n.

Proof. We will define the homomorphisms in the sequence

(2.1) 1 Z
n Mod (Ωn) PMod (Dn) 1δ η|

µ
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and show the sequence is exact and left split. For each 1 ≤ i ≤ n, let Ti denote a
right Dehn twist about a simple closed curve in Ωn parallel to ∂i as in Figure 2.3. If
a = (a1, a2, . . . , an) ∈ Z

n, then define δ(a) = [T a1
1 T a2

2 · · ·T an
n ]. As these Dehn twists com-

mute, δ is a homomorphism. The map µ is defined to be the composition: first the isomor-
phism in Corollary 2.9, second the homomorphism A (see Remark 2.6 above), and third
return the diagonal. As each of these three maps is a homomorphism, µ is a homomorphism.
Observe that µ ◦ δ = id on Z

n. So, δ is injective and (2.1) is exact on the left.

There is a canonical homomorphism η : Mod (Ωn) → Mod (Dn) induced by the inclusion
Ωn ⊆ Dn [FM12, pp. 82–84]. By [FM12, Thm. 3.18, p. 84] (or [FM12, Prop. 3.19, p. 85]
for n = 1), ker η = 〈[T1] , [T2] , . . . , [Tn]〉FA

∼= Z
n where FA indicates free abelian group. By

the definition of Mod (Ωn), Im η ⊆ PMod (Dn) and we have the restriction homomorphism
η| : Mod (Ωn) → PMod (Dn). As ker η = ker η|, the sequence (2.1) is exact in the middle.
Let [h] ∈ PMod (Dn). By an isotopy relative to ∂Dn and Q, we may assume h also equals
the identity on and inside each ∂i for 1 ≤ i ≤ n. If h′ is the restriction of h to Ωn, then
η| ([h′]) = [h]. So, η| is surjective and (2.1) is exact on the right.

Therefore, (2.1) is short exact and left split. By [DF04, Prop. 26, p. 385], there is an

induced isomorphism Mod (Ωn)
∼=
−→ PMod (Dn)× Z

n ∼= Pn × Z
n. �

Corollary 2.9 and Claim 2.10 prove the following folklore theorem.

Theorem 2.11. For each n ≥ 0, there are canonical isomorphisms

Rn
∼= Mod (Ωn) ∼= Pn × Z

n

Examples 2.12. Figure 2.7 depicts five framed pure braids corresponding (from left to
right) to: the Dehn twists T−1

c and Tc from Figure 2.3, the Dehn twists T−1
c and Tc from

Figure 2.4, and the Artin presentation r(a, b, c).

1–1 1 1–1 –1

c

a b

Figure 2.7. Framed pure braids.

We now shift our attention to 3- and 4-manifolds in Artin presentation theory. Each
Artin presentation r ∈ Rn determines the following.

π(r) the group presented by r

A(r) the exponent sum matrix of r

h(r) a self-diffeomorphism of Ωn

M3(r) a closed, oriented 3-manifold

W 4(r) a smooth, compact, simply-connected, oriented 4-manifold

By Corollary 2.9, r determines a self-diffeomorphism h = h(r) of Ωn equal to the iden-
tity on ∂Ωn and unique up to isotopy relative to ∂Ωn. The 3-manifold M3(r) is defined by
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Winkelnkemper’s open book construction with planar page Ωn (see González-Acuña [Gon75]
and Winkelnkemper [Win02]). Namely, consider the mapping torus Ω(h) of h which is ob-
tained from Ωn × [0, 1] by identifying (x, 1) with (h(x), 0) for each x ∈ Ωn. The boundary
of Ω(h) equals (∂Ωn) × S1, and M3(r) is obtained from Ω(h) by gluing on (∂Ωn) × D2

using the identity function on (∂Ωn)× S1. The fundamental group of M3(r) is isomorphic
to π(r) (see [Gon75, p. 10] or [Win02, p. 247]). In particular, M3(r) is an integer homol-
ogy 3-sphere if and only if A(r) is unimodular. Using the symplectic property of closed
surface homeomorphisms, Winkelnkemper observed that A(r) is always symmetric for an
Artin presentation r (see [Win02, p. 250], or see [Cal07] for an algebraic proof of this fact).
This led Winkelnkemper to discover that r determines a 4-manifold using a sort of relative
open book construction as follows. Embed Ωn in S2, and let C be the closure in S2 of the
complement of Ωn (so, C is a disjoint union of n+1 smooth 2-disks). Extend h to S2 then to
D3, and let H be the resulting self-diffeomorphism of D3. The mapping torus W (H) of H
contains C×S1 in its boundary. Then, W 4(r) is obtained from W (H) by gluing on C×D2

in the canonical way. In particular, ∂W 4(r) = M3(r) and the intersection form of W 4(r)
is given by A(r). If M3(r) is the 3-sphere, then we define X4(r) =W 4(r) ∪∂ D

4 a smooth,
closed, simply-connected, oriented 4-manifold (that is, we close up with a 4-handle). By
Cerf’s theorem [Cer68], a 4-handle may be added in an essentially unique way, and so X4(r)
is well-defined.

An alternative definition of W 4(r) is as follows (see also [CW04, §2]). Let r ∈ Rn be
an Artin presentation. By Theorem 2.11, r determines an integer framed pure braid. The
framing of the ith strand is [A(r)]ii. Let L(r) be the framed pure link in S3 = ∂D4 obtained
as the closure of this framed pure braid. Define W 4(r) to be D4 union n 2-handles attached
along L(r). So, L(r) is a Kirby diagram for W 4(r) (see [GS99, p. 115] for an introduction
to Kirby diagrams). Figure 2.8 gives Kirby diagrams for W 4(r) where r ∈ R1 and r ∈ R2.

For example, X4(〈x1 | x1〉) ≈ CP 2 and X4(
〈

x1 | x
−1
1

〉

) ≈ CP 2.

c

a
ba

Figure 2.8. Kirby diagrams for W 4(r) where r = 〈x1 | x
a
1〉 ∈ R1 (left) and

r = r(a, b, c) ∈ R2 (right).

Remark 2.13. Three basic diffeomorphisms between the 4-manifolds W 4(r(a, b, c)) are as
follows where a, b, and c are any integers.

W 4(r(a, b, c)) ≈W 4(r(b, a, c))(2.2)

W 4(r(a, b, 1)) ≈W 4(r(a, b,−1))(2.3)

W 4(r(−a,−b,−c)) ≈W 4(r(a, b, c))(2.4)

The first two diffeomorphisms are given by simple isotopies of the Kirby diagrams: for (2.2)
interchange the two link components, and for (2.3) flip one component to switch the sign
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of the single twist. Regarding (2.3), we mention that while the links are not equivalent
as oriented links, the resulting 4-manifolds are independent of the orientations of the link
components. The third diffeomorphism is a special case of the fact that given a Kirby
diagram for a 2-handlebody Y , one obtains a Kirby diagram for Y by switching all crossings
(that is, take a mirror of the link) and multiplying each framing coefficient by −1. If M3(r)
is S3, then all three diffeomorphisms also hold with X4 in place of W 4.

3. Triangle Groups and Artin Presentations

We recall basic facts about triangle groups (for details, see Magnus [Mag74, Ch. II]
and Ratcliffe [Rat06, §7.2]). Let l, m, and n be integers greater than or equal to 2. Let
∆ = ∆(l,m, n) be a triangle with angles π/l, π/m, and π/n. Define

δ =
1

l
+

1

m
+

1

n

The triangle ∆ is: spherical and lies in X = S2 if δ > 1, Euclidean and lies in X = R
2 if

δ = 1, and hyperbolic and lies in X = H
2 if δ < 1. The triangle reflection group T ∗(l,m, n)

is the group generated by the reflections of X in the lines containing the sides of ∆. The
triangle group T (l,m, n) (sometimes called a von Dyck group) is the index 2 subgroup of
T ∗(l,m, n) consisting of orientation preserving isometries of X. Geometrically, T (l,m, n)
is generated by the rotations of X about the vertices of ∆ by 2π/l, 2π/m, and 2π/n
respectively. The triangle group T (l,m, n) is presented by

〈

x, y | xl, ym, (xy)n
〉

. Notice
that T (l,m, n) is independent up to isomorphism of the order in which the integers l, m,
and n are listed. The triangle group T (l,m, n) is: spherical and finite (but nontrivial) if
δ > 1, Euclidean and infinite if δ = 1, and hyperbolic and infinite if δ < 1. For example,
T (2, 3, 5) is the icosahedral group isomorphic to the order 60 alternating group A5 on five
letters. The infinite groups T (3, 3, 3) and T (3, 3, 4) correspond respectively to triangular
tilings of the Euclidean and hyperbolic planes.

Lemma 3.1. Let r = r(a, b, c) ∈ R2. If |a− c|, |b− c|, and |c| are all greater than or equal
to 2, then π(r) is nontrivial. If in addition 1/ |a− c| + 1/ |b− c| + 1/ |c| ≤ 1, then π(r) is
infinite.

Proof. We construct a surjective group homomorphism π(r) ։ T (|a− c| , |b− c| , |c|). Add
the relation (x1x2)

c to r to obtain

π(r) ։
〈

x1, x2 | x
a−c
1 (x1x2)

c, xb−c
2 (x1x2)

c, (x1x2)
c
〉

∼=
〈

x1, x2 | x
a−c
1 , xb−c

2 , (x1x2)
c
〉

∼=
〈

x1, x2 | x
|a−c|
1 , x

|b−c|
2 , (x1x2)

|c|
〉

= T (|a− c| , |b− c| , |c|)

Now, apply properties of triangle groups recalled above. �

Examples 3.2. Consider the groups π(r(−1,−3, 2)) and π(r(10, 1, 3)). Both groups are
perfect since their exponent summatrices are unimodular. Lemma 3.1 implies that π(r(−1,−3, 2))
is nontrivial and π(r(10, 1, 3)) is infinite. The proof of Lemma 3.1 shows that π(r(−1,−3, 2))
surjects onto T (3, 5, 2) ∼= A5.

Theorem 3.3. Let r = r(a, b, c) ∈ R2. If π(r) is trivial, then the 3-tuple (a, b, c) lies in the
following list where −(a, b, c) = (−a,−b,−c).
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(3.1) (±1,±1, 0) (four 3-tuples)

(3.2) ±(2, 1,±1) and ±(1, 2,±1) (eight 3-tuples)

(3.3) ±(1, 5, 2), ±(5, 1, 2), ±(2, 5, 3), ±(5, 2, 3) (eight 3-tuples)

(3.4) (a, 0,±1) and (0, b,±1) where a, b ∈ Z

(3.5) (c± 1, c∓ 1, c) where c ∈ Z

Proof. As π(r) is trivial, A(r) must be unimodular which means ab − c2 = ±1. Now, the
basic idea is that either |c| ≤ 1 is small and ab = c2 ± 1 determines a and b, or |c| > 1 is
larger and Lemma 3.1 forces a or b to be close to c. We have ab = c2±1 and, by Lemma 3.1,
|a− c| ≤ 1, |b− c| ≤ 1, or |c| ≤ 1. Notice that (a, b, c) appears in the given list if and only
if −(a, b, c) appears. Indeed, as π(r(a, b, c)) ∼= π(r(−a,−b,−c)) (see Examples 2.3(6)), our
list must have this property. So, it suffices to assume c ≥ 0 for the rest of the proof. If
c = 0, then ab = ±1, which gives the tuples (3.1). If c = 1, then ab = 0 or ab = 2. The
former gives the tuples (3.4), and the latter gives the tuples (3.2).

Assume now that c > 1. Then, |a− c| ≤ 1 or |b− c| ≤ 1, and so a or b equals c− 1, c, or
c+ 1. If a = c, then cb = c2 ± 1 implies that c| ± 1, a contradiction. Similarly, b 6= c. Thus,
a = c± 1 or b = c± 1.
Case 1: ab = c2 + 1. Suppose a = c± 1. Then, ab = c2 + 1 implies a|c2 + 1, and a = c± 1
implies a|c2 − 1. So, a|2 and, as a = c ± 1 and c > 1, we have a = 1 or a = 2. This gives
the tuples (1, 5, 2) and (2, 5, 3). Similarly, b = c± 1 gives the tuples (5, 1, 2) and (5, 2, 3).
Case 2: ab = c2−1. Then, a = c±1 if and only if b = c∓1. This gives the tuples (3.5). �

Remark 3.4. It is not difficult to verify the converse of Theorem 3.3 directly using Tietze
transformations. This converse also follows from the Kirby calculus arguments in the next
section. Hence, Theorem 3.3 lists exactly the Artin presentations on two generators that
present the trivial group.

4. 4-manifolds

In this section, we show that M3(r) is S3 for each r listed in Theorem 3.3, and we
identify the corresponding closed 4-manifolds X4(r) = W 4(r) ∪∂ D

4. First, we present a
useful operation.

Lemma 4.1. Let r = r(a, b, c) ∈ R2. There are diffeomorphisms

W 4(r(a, b, c)) ≈W 4(r(a+ b− 2c, b, b− c))(†)

W 4(r(a, b, c)) ≈W 4(r(a, a+ b− 2c, a− c))(‡)

In particular, the corresponding 3-manifoldsM3(r) are diffeomorphic, and the corresponding
groups π(r) are isomorphic.

Proof. For the first diffeomorphism, proceed as shown in Figure 4.1. In the second diagram
in Figure 4.1, the middle circle is parallel to the b-framed circle and has linking number b with
it. If the a- and b-framed circles are oriented clockwise, then the indicated 2-handle slide is
a handle subtraction; the framing of the a-framed circle changes to a + b − 2c (see [GS99,
p. 141]). The isotopy of the middle diagram in Figure 4.1 is explained in Figure 4.2. The
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cc c c

a

b b
a + b – 2c

b –c

b –c b –c b –c

Figure 4.1. From the left: Kirby diagram for W 4(r(a, b, c)), a 2-handle
slide, and results of two isotopies.

c

Figure 4.2. From the left: a portion of the middle diagram in Figure 4.1,
the same portion (enlarged) with c = 1 and without box notation, and the
result of the isotopy of the portion.

result of Figure 4.1 is a Kirby diagram for W 4(r(a+ b− 2c, b, b− c)). For (‡), instead slide
the b-framed circle over the a-framed circle in a similar manner. The remaining claims in
the lemma follow from (†) and (‡) by taking boundaries. �

Theorem 4.2. For each Artin presentation r listed in Theorem 3.3, M3(r) is S3. Further-
more, the corresponding closed 4-manifolds X4(r) are as follows.

(4.1) X4(r(1, 1, 0)) ≈ CP 2 # CP 2 and X4(r(1,−1, 0)) ≈ CP 2 # CP 2

(4.2) X4(r(2, 1, 1)) ≈ CP 2 # CP 2

(4.3) X4(r(5, 1, 2)) ≈ X4(r(5, 2, 3)) ≈ CP 2 # CP 2

(4.4) X4(r(a, 0, 1)) ≈

{

S2 × S2 if a is even

CP 2 # CP 2 if a is odd

(4.5) X4(r(c+ 1, c− 1, c)) ≈

{

S2 × S2 if c is odd

CP 2 # CP 2 if c is even

The 4-manifolds for the remaining 3-tuples in Theorem 3.3 are determined immediately
from those just listed and Remark 2.13.

Proof. First, (4.1) is clear since the Kirby diagrams are two-component unlinks with fram-
ings ±1. By (†), W 4(r(2, 1, 1)) ≈ W 4(r(1, 1, 0)), and (4.2) now follows from (4.1). Next,
W 4(r(2, 1,−1)) ≈ W 4(r(2, 1, 1)) by Remark 2.13, W 4(r(2, 1,−1)) ≈ W 4(r(5, 1, 2)) by (†),
and W 4(r(5, 1, 2)) ≈ W 4(r(5, 2, 3)) by (‡). So, (4.3) now follows from (4.2). The Kirby
diagram for W 4(r(a, 0, 1) is a Hopf link with framings a and 0; by [GS99, pp. 127, 130, &
144], the corresponding 4-manifold may be closed up with a 4-handle yielding S2×S2 if a is
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even and CP 2#CP 2 if a is odd. This proves (4.4). Lastly, (‡) gives W 4(r(c+1, c−1, c)) ≈
W 4(r(c+ 1, 0, 1)), and (4.5) now follows from (4.4). �

Corollary 4.3. The closed 4-manifolds appearing as X4(r) for an Artin presentation r on

n-generators for n = 0, 1, and 2 are exactly: S4 for n = 0, CP 2 and CP 2 for n = 1, and
CP 2 # CP 2, CP 2 # CP 2, CP 2 # CP 2, and S2 × S2 for n = 2.

Remark 4.4. As noted by a referee, an alternative proof of Corollary 4.3 may be obtained
using Corollary 1.4 from Meier and Zupan [MZ17]. Their approach utilizes trisections of
4-manifolds and does not appear to provide alternative proofs of Theorems 3.3 and 4.2
herein.
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