Feedback

On 106.06: Robert M. Young and Jack Calcut write: It is always a delight to stumble serendipitously on an optimisation problem without a solution. As a companion to the results in this Note, we offer the following surprising and counter-intuitive theorem which stands in stark contrast to the classic calculus problem involving one or two cones.

Theorem: Let the unit disk be partitioned into three sectors, each of which is used to form a right circular cone. There is no partition for which the combined volume of the cones is a maximum.

Solution: Toward that end, fix a partition, call the angles of the sectors a, b, c, and let $V(a), V(b), V(c)$ denote the volumes of the corresponding cones. Note that

$$
(a+b)+(b+c)+(c+a)=4 \pi
$$

so that at least one term on the left cannot exceed $\frac{4}{3} \pi$; suppose that

$$
a+b \leqslant \frac{4 \pi}{3}
$$

It is sufficient to establish the following inequality:

$$
\begin{equation*}
V(a)+V(b)<V(a+b) \tag{1}
\end{equation*}
$$

In other words, by combining the two smallest sectors into one, a cone of greater volume is always obtained. Conclusion:

$$
V(a)+V(b)+V(c)<V(a+b)+V(c)
$$

and hence by continuity we can choose ε so small that

$$
V(a)+V(b)+V(c)<V(a+b)+V(c-\varepsilon)+V(\varepsilon)
$$

This shows that no partition can produce a maximal volume.
To establish (1), we shall make use of the following simple lemma, which does not appear to be well known.
$=$ Lemma: If f is strictly increasing on the open interval (A, B), where A is NONnegative, then the function $g(x)=x f(x)$ is strictly superadditive on that interval, namely,

$$
g(x)+g(y)<g(x+y)
$$

whenever $x, y, x+y$ belong to (A, B).
The proof is immediate:

$$
\begin{aligned}
g(x)+g(y) & =x f(x)+y f(y) \\
& <x f(x+y)+y f(x+y) \\
& =(x+y) f(x+y)=g(x+y)
\end{aligned}
$$

since x and y are positive.

Since the volume V of a cone of radius x and slant height 1 is given by

$$
V=\frac{1}{3} \pi x^{2} \sqrt{1-x^{2}}
$$

it remains only to show that the function $g(x)=x^{2} \sqrt{1-x^{2}}$ is strictly superadditive on a sufficiently large interval $(0, B)$. Write $g(x)=x f(x)$, where

$$
\begin{aligned}
f(x) & =x \sqrt{1-x^{2}} \\
& =\sqrt{x^{2}\left(1-x^{2}\right)} .
\end{aligned}
$$

Since the function $\sqrt{u(1-u)}$ is strictly increasing on $0<u<\frac{1}{2}$, it follows that g is strictly superadditive on $0<x<\sqrt{\frac{1}{2}}$.

Finally, let r and s denote the radii of the cones corresponding to the two sectors with angles a and b, respectively. Then

$$
a=2 \pi r \quad \text { and } \quad b=2 \pi s .
$$

Accordingly,

$$
2 \pi(r+s)=a+b \leqslant \frac{4}{3} \pi
$$

so that

$$
r+s \leqslant \frac{2}{3} .
$$

The proof is over:

$$
\frac{2}{3}<\sqrt{\frac{1}{2}}
$$

and (1) follows at once.

Remarks

A simple induction argument shows that the n sector problem never has an optimal solution when $n>2$. Moreover, in this case the combined volume of the n corresponding cones is always less than the maximal volume obtainable with two cones. As is well known, the optimal solution for the single cone problem need not rely on calculus: it follows almost at once from the inequality between the arithmetic and geometric means. It would be interesting to know if the two cone problem also has a purely algebraic solution.
10.1017/mag.2022.144 © The Authors, 2022

Published by Cambridge University Press on behalf of The Mathematical Association
On 106.17: Alan Beardon writes: In Note 106.17 the authors seek all polynomials p that satisfy the functional relation

$$
p(x)^{2}=1+p(x+1) p(x-1) .
$$

First, by elementary manipulation, they reduce this to the relation $p(x) q(x+1)=p(x+1) q(x)$, where $q(x)=p(x+1)+p(x-1)$. Their argument then proceeds by several steps, each of which is based on finding,

