Feedback

On 106.06: Robert M. Young and Jack Calcut write: It is always a delight to stumble serendipitously on an optimisation problem without a solution. As a companion to the results in this Note, we offer the following surprising and counter-intuitive theorem which stands in stark contrast to the classic calculus problem involving one or two cones.

Theorem: Let the unit disk be partitioned into three sectors, each of which is used to form a right circular cone. There is no partition for which the combined volume of the cones is a maximum.

Solution: Toward that end, fix a partition, call the angles of the sectors , , and let , , denote the volumes of the corresponding cones. Note that

\[(a + b) + (b + c) + (c + a) = 4\pi \]

so that at least one term on the left cannot exceed \(\frac{4\pi}{3} \); suppose that

\[a + b \leq \frac{4\pi}{3}. \]

It is sufficient to establish the following inequality:

\[V(a) + V(b) < V(a + b). \] (1)

In other words, by combining the two smallest sectors into one, a cone of greater volume is always obtained. Conclusion:

\[V(a) + V(b) + V(c) < V(a + b) + V(c) \]

and hence by continuity we can choose \(\epsilon \) so small that

\[V(a) + V(b) + V(c) < V(a + b) + V(c - \epsilon) + V(\epsilon). \]

This shows that no partition can produce a maximal volume.

To establish (1), we shall make use of the following simple lemma, which does not appear to be well known.

Lemma: If \(f \) is strictly increasing on the open interval \((A, B)\), where \(A \) is negative, then the function \(g(x) = xf(x) \) is strictly superadditive on that interval, namely,

\[g(x) + g(y) < g(x + y) \]

whenever \(x, y, x + y \) belong to \((A, B)\).

The proof is immediate:

\[g(x) + g(y) = xf(x) + yf(y) \]
\[< xf(x + y) + yf(x + y) \]
\[= (x + y)f(x + y) = g(x + y) \]

since \(x \) and \(y \) are positive.

https://doi.org/10.1017/mag.2022.144 Published online by Cambridge University Press
Since the volume \(V \) of a cone of radius \(x \) and slant height 1 is given by
\[
V = \frac{1}{3}\pi x^2 \sqrt{1 - x^2},
\]
it remains only to show that the function \(g(x) = x^2 \sqrt{1 - x^2} \) is strictly superadditive on a sufficiently large interval \((0, B)\). Write \(g(x) = x f(x) \), where
\[
f(x) = x \sqrt{1 - x^2} = \sqrt{x^2 (1 - x^2)}.
\]
Since the function \(\sqrt{u (1 - u)} \) is strictly increasing on \(0 < u < \frac{1}{2} \), it follows that \(g \) is strictly superadditive on \(0 < x < \sqrt{\frac{1}{2}} \).

Finally, let \(r \) and \(s \) denote the radii of the cones corresponding to the two sectors with angles \(a \) and \(b \), respectively. Then
\[
a = 2\pi r \quad \text{and} \quad b = 2\pi s.
\]
Accordingly,
\[
2\pi (r + s) = a + b \leq \frac{4}{3}\pi
\]
so that
\[
r + s \leq \frac{2}{3}.
\]
The proof is over:
\[
\frac{2}{3} < \frac{1}{\sqrt{2}}
\]
and (1) follows at once.

Remarks

A simple induction argument shows that the \(n \) sector problem never has an optimal solution when \(n > 2 \). Moreover, in this case the combined volume of the \(n \) corresponding cones is always less than the maximal volume obtainable with two cones. As is well known, the optimal solution for the single cone problem need not rely on calculus: it follows almost at once from the inequality between the arithmetic and geometric means. It would be interesting to know if the two cone problem also has a purely algebraic solution.

On 106.17: Alan Beardon writes: In Note 106.17 the authors seek all polynomials \(p \) that satisfy the functional relation
\[
p(x)^2 = 1 + p(x + 1)p(x - 1).
\]
First, by elementary manipulation, they reduce this to the relation
\[
p(x)q(x + 1) = p(x + 1)q(x), \quad \text{where} \quad q(x) = p(x + 1) + p(x - 1).
\]
Their argument then proceeds by several steps, each of which is based on finding,