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Abstract
González-Acuña showed that Artin presentations characterize closed, ori-

entable 3-manifold groups. Winkelnkemper later discovered that each Artin pre-

sentation determines a smooth, compact, simply connected 4-manifold. We utilize

triangle groups to find all Artin presentations on two generators that present the

trivial group. We then determine all smooth, closed, simply connected 4-manifolds

with second betti number at most two that appear in Artin presentation theory.

Keywords Artin presentation � Pure braid � Fundamental group � 3-Manifold � 4-

Manifold � triangle group � Mapping class group

Mathematics Subject Classification Primary 57M05 � Secondary 57K40

and 20F36

1 Introduction

An Artin presentation is a group presentation r ¼ x1; x2; . . .; xn j r1; r2; . . .; rnh i such

that the following holds in the free group Fn ¼ x1; x2; . . .; xnh i

x1x2 � � � xn ¼ ðr�1
1 x1r1Þðr�1

2 x2r2Þ � � � ðr�1
n xnrnÞ

González-Acuña [1, Thm. 4] showed that every closed, orientable 3-manifold
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admits an open book decomposition with planar page. As a corollary, he obtained

the following algebraic characterization of 3-manifold groups.

Theorem (González-Acuña [1, Thm. 6]) A group G is the fundamental group of a
closed, orientable 3-manifold if and only if G admits an Artin presentation r for
some n.

Winkelnkemper [2, p. 250] discovered that each Artin presentation r determines

not only a closed, orientable 3-manifold M3ðrÞ but also a smooth, compact, simply-

connected 4-manifold W4ðrÞ such that oW4ðrÞ ¼ M3ðrÞ. All intersection forms are

represented by some W4ðrÞ [2, pp. 248–250]. If M3ðrÞ is the 3-sphere, then we

consider the smooth, closed, simply connected 4-manifold X4ðrÞ ¼ W4ðrÞ [o D4

obtained from W4ðrÞ by closing up with a 4-handle.

While all closed, orientable 3-manifolds appear in Artin presentation theory, it is

unknown which 4-manifolds appear as a W4ðrÞ or an X4ðrÞ. The only contractible

manifold W4ðrÞ is D4 (when r ¼ jh i is the empty Artin presentation). Therefore, no

Mazur manifold appears as a W4ðrÞ. Nevertheless, there are no known smooth,

closed, simply connected 4-manifolds that do not appear as an X4ðrÞ; many

interesting closed 4-manifolds are known to appear this way including all elliptic

surfaces E(n) where E(2) is diffeomorphic to the Kummer surface K3 [3].

We determine all closed 4-manifolds X4ðrÞ where r is an Artin presentation on

two generators. (For n ¼ 0 and n ¼ 1, the problem is straightforward: only S4, CP2,

and CP2 appear.) Theorem 4.2 gives the complete list of these manifolds:

CP2 # CP2, CP2 # CP2, CP2 # CP2, and S2 � S2. Exotic simply-connected,

closed 4-manifolds are currently not known to exist with second betti number

� 2. Theorem 4.2 shows that such manifolds, whether or not they exist in general,

do not appear in Artin presentation theory. Exotic 4-manifolds do appear in Artin

presentation theory with second betti number � 10 [4]. We conjecture that closed,

exotic 4-manifolds appear in Artin presentation theory with second betti number

three, and that this relates to the Torelli subgroup in Artin presentation theory

(see [2, p. 250] and [4]).

Our proof of Theorem 4.2 uses the classification of Artin presentations on two

generators and properties of classical triangle groups to find all Artin presentations

on two generators that present the trivial group. We then introduce a move on Artin

presentations on two generators which preserves the 4-manifolds. Using this move

and the Kirby calculus, we then identify the 4-manifolds. It would be interesting to

find other such moves in Artin presentation theory. Armas-Sanabria has shown

certain three generator Artin presentations present nontrivial groups [5].

For each nonnegative integer n, let Rn denote the set of Artin presentations on n
generators. We include a proof of the folklore theorem (see [2, p. 245] and [1,

p. 10]) that Rn is a group isomorphic to the product Pn � Zn of the pure braid group

Pn with the rank n free abelian group.

Throughout, X � Y means that X is orientation preserving diffeomorphic to Y. If

X is an oriented manifold, then X denotes the same manifold with the opposite

orientation.
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2 Artin presentations

In this section, we review fundamental properties of Artin presentations and fix

notation. We begin by recalling how each Artin presentation arises naturally from a

homeomorphism of a compact 2-disk with holes.

Let Xn denote the compact 2-disk with n holes as in Fig. 1.

The boundary components o0; o1; . . .; on of Xn are parameterized clockwise and

are based at p0; p1; . . .; pn, respectively. For each 1� i� n, let si be an oriented

segment from p0 to pi as in Fig. 1. Given a path a, let a denote the reverse path and

let a½ � denote the path homotopy class of a. Concatenation of paths—performed left

to right—and the induced operation on classes will be denoted by juxtaposition. For

each 1� i� n, let xi ¼ sioisi½ � as in Fig. 2.

Therefore, p1 Xn; p0ð Þ ffi Fn ¼ x1; x2; . . .; xnh i is free of rank n.

Let h : Xn ! Xn be a homeomorphism that equals the identity (point-wise) on

the boundary of Xn. Then, the induced homomorphism h] : p1 Xn; p0ð Þ ! p1 Xn; p0ð Þ
is an automorphism. For each 1� i� n, define ri ¼ siðh 
 siÞ½ � 2 Fn. Define the

presentation r ¼ rðhÞ ¼ x1; x2; . . .; xn j r1; r2; . . .; rnh i.

Claim 2.1 For each 1� i� n, we have h]ðxiÞ ¼ r�1
i xiri.

Proof Note that h 
 si ¼ h 
 si, r�1
i ¼ ðh 
 siÞsi½ �, and h 
 oi ¼ oi. Therefore,

h]ðxiÞ ¼ h 
 ðsioisiÞ½ � ¼ h 
 si½ � h 
 oi½ � h 
 si½ �
¼ h 
 si½ � si½ � si½ � oi½ � si½ � si½ � h 
 si½ �
¼ r�1

i xiri

h

Claim 2.2 The presentation r ¼ rðhÞ determined by h is an Artin presentation.

Proof The following holds in Fn

x1x2 � � � xn ¼ o0½ � ¼ h 
 o0½ �
¼ h]ðx1x2 � � � xnÞ ¼ h]ðx1Þh]ðx2Þ � � � h]ðxnÞ
¼ ðr�1

1 x1r1Þðr�1
2 x2r2Þ � � � ðr�1

n xnrnÞ

where the last equality used Claim 2.1. h

Fig. 1 Compact 2-disk with n
holes denoted Xn (the case n ¼
3 is depicted)
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Let Homeo Xn; oXnð Þ denote the group of homeomorphisms of Xn that equal the

identity (point-wise) on oXn. By Claim 2.2, we have a function

w : Homeo Xn; oXnð Þ ! Rn

given by w hð Þ ¼ rðhÞ. If h and h0 are isotopic relative to oXn, then wðhÞ ¼ wðh0Þ.
We will show that w is a surjective homomorphism of groups. First, we present a

few examples. Given an Artin presentation r 2 Rn, we define pðrÞ to be the group

presented by r and A(r) to be the exponent sum matrix of r meaning AðrÞ½ �ij equals

the exponent sum of xi in rj. Note that A(r) is an n � n integer matrix, the

abelianization of pðrÞ is isomorphic to Zn=ImA where ImA denotes the image of

A : Zn ! Zn, and pðrÞ is perfect if and only if A(r) is unimodular (that is,

det A ¼ �1).

Example 2.3

(1) The empty presentation e ¼ jh i is the unique Artin presentation in R0. Here,

pðeÞ is trivial and AðrÞ ¼ ½� is empty.

(2) The Artin presentations associated to Tc and T�1
c in Fig. 3 are x1 j x1h i and

x1 j x�1
1

� �
respectively. Given a homeomorphism h 2 Homeo Xn; oXnð Þ, one

computes the associated Artin presentation r ¼ wðhÞ as follows. Recall

Figs. 1 and 2. The relation ri is obtained by starting at pi, following hðsiÞ, and

recording xj (respectively, x�1
j ) each time gj is crossed from left to right

(respectively, right to left).

(3) Each r 2 R1 has the form r ¼ x1 j xa
1

� �
for some integer a. Here, pðrÞ ffi

Z= aj jZ and AðrÞ ¼ a½ �.
(4) Let a1; a2; . . .; an be any integers. Then, r ¼ x1; x2; . . .; xn j xa1

1 ; xa2

2 ; . . .; xan
n

� �

is an Artin presentation in Rn that presents the free product of cyclic groups

Z= aij jZ.

Fig. 2 Generators xi of
p1 X3; p0ð Þ

Fig. 3 Simple closed curve c in X1 (center), result of right Dehn twist Tc about c (right), and result of left

Dehn twist T�1
c about c (left)
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(5) The Artin presentations associated to Tc and T�1
c in Fig. 4 are

x1; x2 j x1x2; x1x2h i and x1; x2 j x�1
2 x�1

1 ; x�1
2 x�1

1

� �
respectively.

(6) Each r ¼ x1; x2 j r1; r2h i 2 R2 has the form r1 ¼ xa�c
1 ðx1x2Þc

and r2 ¼
xb�c

2 ðx1x2Þc
for some integers a, b, and c (see [6, p. 360] and [2, p. 245]).

We denote such an Artin presentation by r(a, b, c), so

Aðrða; b; cÞÞ ¼ a c
c b

� �
. For instance, rð�1;�3; 2Þ presents the binary

icosahedral group I(120). We mention that pðrða; b; cÞÞ ffi pðrð�a;�b;�cÞÞ
by the map xi 7!xi.

Remark 2.4 For each n, Rn has a natural binary operation. Namely, let r; u 2 Rn.

Define the composition u 
 r to be the presentation t ¼ x1; x2; . . .; xn j t1; t2; . . .; tnh i
as follows: let Ri be obtained by substituting u�1

j xjuj for xj in ri, and define ti ¼ uiRi.

We now show that t 2 Rn provided r; u 2 Imw (shortly, we will see that

Imw ¼ Rn, which means this operation is defined on all of Rn). Let h; k 2
Homeo Xn; oXnð Þ such that wðhÞ ¼ r and wðkÞ ¼ u. For each 1� j� n, Claim 2.1

implies that h]ðxjÞ ¼ r�1
j xjrj and k]ðxjÞ ¼ u�1

j xjuj. Therefore, for each 1� i� n, we

have

k 
 hð Þ]ðxiÞ ¼ k] h]ðxiÞ
� �

¼ k] r�1
i xiri

� �

¼ k]ðriÞ�1u�1
i xiuik]ðriÞ

¼ uik]ðriÞ
� ��1

xi uik]ðriÞ
� �

¼ uiRið Þ�1xi uiRið Þ
¼ t�1

i xiti

Thus,

x1x2 � � � xn ¼ k 
 hð Þ]ðx1x2 � � � xnÞ ¼ ðt�1
1 x1t1Þðt�1

2 x2t2Þ � � � ðt�1
n xntnÞ

and so t ¼ u 
 r 2 Rn. Summarizing, wj : Homeo Xn; oXnð Þ ! Imw is surjective,

the domain is a group, the codomain is a set with a binary operation, and w respects

the operations—meaning wðk 
 hÞ ¼ wðkÞ 
 wðhÞ. These facts imply that Imw is a

Fig. 4 Simple closed curve c in X2 (center), result of right Dehn twist Tc about c (right), and result of left

Dehn twist T�1
c about c (left)
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group and wj is a surjective homomorphism. Note that each Artin presentation in the

examples above lies in Imw. The identity in Imw is x1; x2; . . .; xn j 1; 1; . . .; 1h i.

Let Dn denote the compact 2-disk with n� 0 marked points q1; q2; . . .; qn in its

interior as in Fig. 5.

We choose qi to lie at the center of the simple closed curve oi and let

Q ¼ q1; q2; . . .; qnf g. Let D2 � Q be the 2-disk with n� 0 punctures.

Claim 2.5 The function w is surjective. Hence, w : Homeo Xn; oXnð Þ ! Rn is a
surjective homomorphism of groups.

Proof Let t 2 Rn. It suffices to prove that t 2 Imw since then the second conclusion

follows from Remark 2.4. Define the endomorphism b : Fn ! Fn by xi 7!t�1
i xiti. By

Artin1 [9, pp. 64–68], the map b is a pure braid group automorphism of Fn. Therefore,

there exists a homeomorphism h0 of D2 � Q that is a product of homeomorphisms

corresponding to braid group generators such that: h0 is the identity on oD2, h0 sends

each puncture to itself (by purity ofb), and h0
] ¼ b. Furthermore, we can and do assume

that the restriction h of h0 to Xn equals the identity on oXn. Hence, h 2
Homeo Xn; oXnð Þ and h] ¼ b. Let r ¼ wðhÞ 2 Rn. For each 1� i� n, h]ðxiÞ ¼
r�1

i xiri by Claim 2.1. So, t�1
i xiti ¼ r�1

i xiri and xi tir
�1
i

� �
¼ tir

�1
i

� �
xi. Commuting

elements in Fn are powers of the same word [10, p. 42]. Thus, tir
�1
i ¼ xai

i for some

integer ai, which implies ti ¼ xai
i ri. Define u ¼ x1; x2; . . .; xn j xa1

1 ; xa2

2 ; . . .; xan
n

� �
2 Rn.

By the examples above, there exists k 2 Homeo Xn; oXnð Þ such that wðkÞ ¼ u. As

u�1
j xjuj ¼ xj for each 1� j� n, we have t ¼ u 
 r 2 Imw as desired. h

Remark 2.6 Let Matðn;ZÞ be the additive group of n � n integer matrices. The

function A : Rn ! Matðn;ZÞ is a homomorphism—meaning

Aðu 
 rÞ ¼ AðuÞ þ AðrÞ. To see this, note that u 
 r 2 Rn by Claim 2.5. By

definition, Aðu 
 rÞ½ �ij equals the exponent sum of xi in ujRj where Rj is obtained

from rj by substituting u�1
k xkuk for xk. Therefore, Aðu 
 rÞ½ �ij¼ AðuÞ½ �ijþ AðrÞ½ �ij as

desired.

Let Homeo0 Xn; oXnð Þ be the subgroup of Homeo Xn; oXnð Þ consisting of

homeomorphisms (fixed point-wise on oXn) that are isotopic relative to oXn to

the identity.

Claim 2.7 The kernel of w equals Homeo0 Xn; oXnð Þ.

Before we prove Claim 2.7, we need a technical lemma. Incidentally, this lemma

is the reason we may—and typically do—assume the individual relations ri in each

Artin presentation r are freely reduced (see also [6, pp. 363–365]).

Lemma 2.8 Let h be a diffeomorphism of Xn fixed point-wise on oXn. Assume that
the arcs hðsiÞ meet the segments gj (see ?tic=?>Fig. 2) in general position. Suppose

some hðsiÞ crosses some gj (j ¼ i is possible) at the point a and then, without

1 Artin’s beautiful algebraic argument appeared originally in German and later in English [7,

pp. 114–115]; Birman gave an exposition of Artin’s argument in her book [8, Thm. 1.9, p. 30].
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crossing any other segment gk, hðsiÞ crosses gj in the opposite direction at the point

b as in ?tic=?>Fig. 6.
Then, there is an isotopy of h relative to oXn that eliminates the crossings a and

b. This isotopy introduces no new crossings between the arcs hðskÞ and gl, though it
may eliminate other crossings (in case some hðskÞ meets c).

Proof of Lemma 2.8 Let c and r be the arcs between a and b in gj and hðsiÞ,
respectively. Therefore, C ¼ c [ r is a simple closed curve in IntXn. By the

Schoenflies theorem, C bounds a 2-disk D � Int D2. We show D is disjoint from

oXn. As D � Int D2, D is disjoint from o0. Suppose, by way of contradiction, that D
meets ok for some 1� k� n. Then, ok � IntD by connectedness. If k 6¼ j, then the

segment gk must meet C by the Jordan Curve Theorem JCT. Hence, gk meets r
which contradicts the hypotheses on hðsiÞ. Next, assume k ¼ j. Observe that the

segment gj begins on oj in IntD. Also, an open segment of gj ending at the lower

point a or b (a in Fig. 6) does not lie in D. Therefore, gj must meet r at a point other

than a or b by the JCT. Again, this contradicts the hypotheses on hðsiÞ. Therefore,

D \ oXn ¼ ; and D � IntXn. The isotopy is now obtained by pushing r across D to

a parallel copy of c as in Fig. 6. h

Proof of Claim 2.7 Let h 2 kerw, and let r ¼ wðhÞ. By an isotopy of h relative to

oXn, we can and do assume h is a diffeomorphism and the arcs hðsiÞ meet the

segments gj in general position. As h 2 kerw, each ri ¼ 1 which means ri freely

reduces to 1. Let x�1
j x
1

j be adjacent letters in some ri (j ¼ i is possible); this

corresponds to hðsiÞ crossing some gj and then, without crossing any other segment

gk, crossing gj in the opposite direction. By Lemma 2.8, an isotopy of h relative to

oXn eliminates these crossings. Repeating this operation finitely many times, we

may assume that the arcs hðsiÞ are disjoint from the segments gj. By a small isotopy

of h relative to oXn, we may assume height restricts to a Morse function on the arcs

hðsiÞ with distinct critical values. The minimal local maximum of height on hðs1Þ
may be ambiently canceled with an adjacent local minimum (see [11, pp. 1845–

1852], especially Fig. 11). Repeating this operation finitely many times, the arc

hðs1Þ has strictly increasing height. By integrating an appropriate horizontal vector

field on Xn, we may assume hðs1Þ ¼ s1. Integrating a vector field tangent to s1, we

may assume h also equals the identity on s1. One may repeat this procedure on s2—

without disturbing s1—and so forth. Thus, we have h is a diffeomorphism of Xn

equal to the identity on oXn and on the segments si for 1� i� n. Cutting Xn open

along the arcs si, h becomes a homeomorphism of the 2-disk equal to the identity on

Fig. 5 Surface Dn that is the

compact 2-disk D2 with n
marked points q1; q2; . . .; qn in
its interior (the case n ¼ 3 is
depicted)
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boundary. By Alexander’s trick [12, 47–48], this homeomorphism is isotopic to the

identity relative to boundary. This latter isotopy induces an isotopy relative to oXn

of h to the identity. h

The mapping class group of Xn is

Mod Xnð Þ ¼ Homeo Xn; oXnð Þ=Homeo0 Xn; oXnð Þ

For useful equivalent definitions of Mod Xnð Þ, see [12, pp. 44–45]. Claims 2.5

and 2.7 immediately imply the following.

Corollary 2.9 The function Mod Xnð Þ ! Rn given by h½ �7!wðhÞ is an isomorphism.

Recall from Fig. 5 above that Dn is the compact 2-disk with n marked points in

its interior. The mapping class group of Dn is

Mod Dnð Þ ¼ Homeo Dn; oDnð Þ=Homeo0 Dn; oDnð Þ

where homeomorphisms and isotopies fix oDn ¼ S1 point-wise and the marked

points may be permuted [12, p. 45]. The pure mapping class group PMod Dnð Þ is the

subgroup of Mod Dnð Þ that fixes each marked point individually [12, pp. 90]. Let Bn

denote the classical n strand braid group and Pn denote the n strand pure braid

group. There are canonical isomorphisms Bn ffi Mod Dnð Þ and Pn ffi PMod Dnð Þ [12,

pp. 243–249]. Recall that D2 � Q is the 2-disk with n punctures. One may regard

marked points as punctures (see [12, p. 45]) in the sense that there are canonical

isomorphisms Mod Dnð Þ ffi Mod D2 � Qð Þ and PMod Dnð Þ ffi PMod D2 � Qð Þ.

Claim 2.10 There is a canonical isomorphism Mod Xnð Þ ffi Pn � Zn.

Proof We will define the homomorphisms in the sequence

ð2:1Þ

and show the sequence is exact and left split. For each 1� i� n, let Ti denote a right

Dehn twist about a simple closed curve in Xn parallel to oi as in Fig. 3. If

a ¼ ða1; a2; . . .; anÞ 2 Zn, then define dðaÞ ¼ Ta1

1 Ta2

2 � � � Tan
n

� 	
. As these Dehn twists

commute, d is a homomorphism. The map l is defined to be the composition: first,

the isomorphism in Corollary 2.9, second, the homomorphism A (see Remark 2.6

above), and third, return the diagonal. As each of these three maps is a

Fig. 6 Arc hðsiÞ meeting gj consecutively in opposite directions without meeting any segments gk in-

between (left) and result of isotopy pushing r across D to a parallel copy of c (right)
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homomorphism, l is a homomorphism. Observe that l 
 d ¼ id on Zn. So, d is

injective and (2.1) is exact on the left.

There is a canonical homomorphism g : Mod Xnð Þ ! Mod Dnð Þ induced by the

inclusion Xn � Dn [12, pp. 82–84]. By [12, Thm. 3.18, p. 84] (or [12, Prop. 3.19,

p. 85] for n ¼ 1), ker g ¼ T1½ �; T2½ �; . . .; Tn½ �h iFAffi Zn where FA indicates free

abelian group. By the definition of Mod Xnð Þ, Im g � PMod Dnð Þ and we have the

restriction homomorphism gj : Mod Xnð Þ ! PMod Dnð Þ. As ker g ¼ ker gj, the

sequence (2.1) is exact in the middle. Let h½ � 2 PMod Dnð Þ. By an isotopy relative

to oDn and Q, we may assume h also equals the identity on and inside each oi for

1� i� n. If h0 is the restriction of h to Xn, then gjð h0½ �Þ ¼ h½ �. So, gj is surjective

and (2.1) is exact on the right.

Therefore, (2.1) is short exact and left split. By [13, Prop. 26, p. 385], there is an

induced isomorphism Mod Xnð Þ�!ffi PMod Dnð Þ � Zn ffi Pn � Zn. h

Corollary 2.9 and Claim 2.10 prove the following folklore theorem.

Theorem 2.11 For each n� 0, there are canonical isomorphisms

Rn ffi Mod Xnð Þ ffi Pn � Zn

Example 2.12 Figure 7 depicts five framed pure braids corresponding (from left to

right) to: the Dehn twists T�1
c and Tc from Fig. 3, the Dehn twists T�1

c and Tc from

Fig. 4, and the Artin presentation r(a, b, c).

We now shift our attention to 3- and 4-manifolds in Artin presentation theory.

Each Artin presentation r 2 Rn determines the following.

pðrÞ the group presented by r

AðrÞ the exponent sum matrix of r

hðrÞ a self-diffeomorphism of Xn

M3ðrÞ a closed, oriented 3 � manifold

W4ðrÞ a smooth, compact, simply-connected, oriented 4 � manifold

By Corollary 2.9, r determines a self-diffeomorphism h ¼ hðrÞ of Xn equal to the

identity on oXn and unique up to isotopy relative to oXn. The 3-manifold M3ðrÞ is

defined by Winkelnkemper’s open book construction with planar page Xn (see

González-Acuña [1] and Winkelnkemper [2]). Namely, consider the mapping torus

Fig. 7 Framed pure braids
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XðhÞ of h which is obtained from Xn � ½0; 1� by identifying (x, 1) with (h(x), 0) for

each x 2 Xn. The boundary of XðhÞ equals oXnð Þ � S1, and M3ðrÞ is obtained from

XðhÞ by gluing on oXnð Þ � D2 using the identity function on oXnð Þ � S1. The

fundamental group of M3ðrÞ is isomorphic to pðrÞ (see [1, p. 10] or [2, p. 247]). In

particular, M3ðrÞ is an integer homology 3-sphere if and only if A(r) is unimodular.

Using the symplectic property of closed surface homeomorphisms, Winkelnkemper

observed that A(r) is always symmetric for an Artin presentation r (see [2, p. 250],

or see [6] for an algebraic proof of this fact). This led Winkelnkemper to discover

that r determines a 4-manifold using a sort of relative open book construction as

follows. Embed Xn in S2, and let C be the closure in S2 of the complement of Xn (so,

C is a disjoint union of n þ 1 smooth 2-disks). Extend h to S2 then to D3, and let H

be the resulting self-diffeomorphism of D3. The mapping torus W(H) of H contains

C � S1 in its boundary. Then, W4ðrÞ is obtained from W(H) by gluing on C � D2 in

the canonical way. In particular, oW4ðrÞ ¼ M3ðrÞ and the intersection form of

W4ðrÞ is given by A(r). If M3ðrÞ is the 3-sphere, then we define X4ðrÞ ¼
W4ðrÞ [o D4 a smooth, closed, simply connected, oriented 4-manifold (that is, we

close up with a 4-handle). By Cerf’s theorem [14], a 4-handle may be added in an

essentially unique way, and so X4ðrÞ is well-defined.

An alternative definition of W4ðrÞ is as follows (see also [3x2]). Let r 2 Rn be an

Artin presentation. By Theorem 2.11, r determines an integer framed pure braid.

The framing of the ith strand is AðrÞ½ �ii. Let L(r) be the framed pure link in S3 ¼ oD4

obtained as the closure of this framed pure braid. Define W4ðrÞ to be D4 union n 2-

handles attached along L(r). Therefore, L(r) is a Kirby diagram for W4ðrÞ (see [15,

p. 115] for an introduction to Kirby diagrams). Figure 8 gives Kirby diagrams for

W4ðrÞ where r 2 R1 and r 2 R2.

For example, X4ð x1 j x1h iÞ � CP2 and X4ð x1 j x�1
1

� �
Þ � CP2.

Remark 2.13 Three basic diffeomorphisms between the 4-manifolds W4ðrða; b; cÞÞ
are as follows where a, b, and c are any integers.

W4ðrða; b; cÞÞ � W4ðrðb; a; cÞÞ ð2:2Þ

W4ðrða; b; 1ÞÞ � W4ðrða; b;�1ÞÞ ð2:3Þ

W4ðrð�a;�b;�cÞÞ � W4ðrða; b; cÞÞ ð2:4Þ

The first two diffeomorphisms are given by simple isotopies of the Kirby diagrams:

Fig. 8 Kirby diagrams for

W4ðrÞ where r ¼ x1 j xa
1

� �
2 R1

(left) and r ¼ rða; b; cÞ 2 R2

(right)
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for (2.2) interchange, the two link components, and for (2.3) flip one component to

switch the sign of the single twist. Regarding (2.3), we mention that while the links

are not equivalent as oriented links, the resulting 4-manifolds are independent of the

orientations of the link components. The third diffeomorphism is a special case of

the fact that given a Kirby diagram for a 2-handlebody Y, one obtains a Kirby

diagram for Y by switching all crossings (that is, take a mirror of the link) and

multiplying each framing coefficient by �1. If M3ðrÞ is S3, then all three diffeo-

morphisms also hold with X4 in place of W4.

3 Triangle groups and Artin presentations

We recall basic facts about triangle groups (for details, see Magnus [16, Ch. II] and

Ratcliffe [17x7.2]). Let l, m, and n be integers greater than or equal to 2. Let

D ¼ Dðl;m; nÞ be a triangle with angles p=l, p=m, and p=n. Define

d ¼ 1

l
þ 1

m
þ 1

n

The triangle D is: spherical and lies in X ¼ S2 if d[ 1, Euclidean and lies in

X ¼ R2 if d ¼ 1, and hyperbolic and lies in X ¼ H2 if d\1. The triangle reflection
group T�ðl;m; nÞ is the group generated by the reflections of X in the lines con-

taining the sides of D. The triangle group T(l, m, n) (sometimes called a von Dyck
group) is the index 2 subgroup of T�ðl;m; nÞ consisting of orientation preserving

isometries of X. Geometrically, T(l, m, n) is generated by the rotations of X about

the vertices of D by 2p=l, 2p=m, and 2p=n, respectively. The triangle group

T(l, m, n) is presented by x; y j xl; ym; ðxyÞn� �
. Notice that T(l, m, n) is independent

up to isomorphism of the order in which the integers l, m, and n are listed. The

triangle group T(l, m, n) is: spherical and finite (but nontrivial) if d[ 1, Euclidean
and infinite if d ¼ 1, and hyperbolic and infinite if d\1. For example, T(2, 3, 5) is

the icosahedral group isomorphic to the order 60 alternating group A5 on five

letters. The infinite groups T(3, 3, 3) and T(3, 3, 4) correspond, respectively, to

triangular tilings of the Euclidean and hyperbolic planes.

Lemma 3.1 Let r ¼ rða; b; cÞ 2 R2. If a � cj j, b � cj j, and cj j are all greater than
or equal to 2, then pðrÞ is nontrivial. If in addition
1= a � cj j þ 1= b � cj j þ 1= cj j � 1, then pðrÞ is infinite.

Proof We construct a surjective group homomorphism

pðrÞ�Tð a � cj j; b � cj j; cj jÞ. Add the relation ðx1x2Þc
to r to obtain

pðrÞ� x1; x2 j xa�c
1 ðx1x2Þc; xb�c

2 ðx1x2Þc; ðx1x2Þc� �

ffi x1; x2 j xa�c
1 ; xb�c

2 ; ðx1x2Þc� �

ffi x1; x2 j x
a�cj j

1 ; x
b�cj j

2 ; ðx1x2Þ cj j
D E

¼ Tð a � cj j; b � cj j; cj jÞ

Now, apply properties of triangle groups recalled above. h
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Example 3.2 Consider the groups pðrð�1;�3; 2ÞÞ and pðrð10; 1; 3ÞÞ. Both groups

are perfect since their exponent sum matrices are unimodular. Lemma 3.1 implies

that pðrð�1;�3; 2ÞÞ is nontrivial and pðrð10; 1; 3ÞÞ is infinite. The proof of

Lemma 3.1 shows that pðrð�1;�3; 2ÞÞ surjects onto Tð3; 5; 2Þ ffi A5.

Theorem 3.3 Let r ¼ rða; b; cÞ 2 R2. If pðrÞ is trivial, then the 3-tuple (a, b, c) lies
in the following list where �ða; b; cÞ ¼ ð�a;�b;�cÞ.
(3:1) ð�1;�1; 0Þ (four 3-tuples)

(3:2) �ð2; 1;�1Þ and �ð1; 2;�1Þ (eight 3-tuples)

(3:3) �ð1; 5; 2Þ, �ð5; 1; 2Þ, �ð2; 5; 3Þ, �ð5; 2; 3Þ (eight 3-tuples)

(3:4) ða; 0;�1Þ and ð0; b;�1Þ where a; b 2 Z

(3:5) ðc � 1; c 
 1; cÞ where c 2 Z

Proof As pðrÞ is trivial, A(r) must be unimodular which means ab � c2 ¼ �1.

Now, the basic idea is that either cj j � 1 is small and ab ¼ c2 � 1 determines a and

b, or cj j[ 1 is larger and Lemma 3.1 forces a or b to be close to c. We have

ab ¼ c2 � 1 and, by Lemma 3.1, a � cj j � 1, b � cj j � 1, or cj j � 1. Notice that

(a, b, c) appears in the given list if and only if �ða; b; cÞ appears. Indeed, as

pðrða; b; cÞÞ ffi pðrð�a;�b;�cÞÞ (see Examples 2.3 (6)), our list must have this

property. Therefore, it suffices to assume c� 0 for the rest of the proof. If c ¼ 0,

then ab ¼ �1, which gives the tuples 3.1. If c ¼ 1, then ab ¼ 0 or ab ¼ 2. The

former gives the tuples 3.4, and the latter gives the tuples 3.2.

Assume now that c[ 1. Then, a � cj j � 1 or b � cj j � 1, and so a or b equals

c � 1, c, or c þ 1. If a ¼ c, then cb ¼ c2 � 1 implies that cj � 1, a contradiction.

Similarly, b 6¼ c. Thus, a ¼ c � 1 or b ¼ c � 1.

Case 1: ab ¼ c2 þ 1. Suppose a ¼ c � 1. Then, ab ¼ c2 þ 1 implies ajc2 þ 1,

and a ¼ c � 1 implies ajc2 � 1. Therefore, a|2 and, as a ¼ c � 1 and c[ 1, we have

a ¼ 1 or a ¼ 2. This gives the tuples (1, 5, 2) and (2, 5, 3). Similarly, b ¼ c � 1

gives the tuples (5, 1, 2) and (5, 2, 3).

Case 2: ab ¼ c2 � 1. Then, a ¼ c � 1 if and only if b ¼ c 
 1. This gives the

tuples 3.5. h

Remark 3.4 It is not difficult to verify the converse of Theorem 3.3 directly using

Tietze transformations. This converse also follows from the Kirby calculus

arguments in the next section. Hence, Theorem 3.3 lists exactly the Artin

presentations on two generators that present the trivial group.

4 4-Manifolds

In this section, we show that M3ðrÞ is S3 for each r listed in Theorem 3.3, and we

identify the corresponding closed 4-manifolds X4ðrÞ ¼ W4ðrÞ [o D4. First, we

present a useful operation.

Lemma 4.1 Let r ¼ rða; b; cÞ 2 R2. There are diffeomorphisms
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W4ðrða; b; cÞÞ � W4ðrða þ b � 2c; b; b � cÞÞ y

W4ðrða; b; cÞÞ � W4ðrða; a þ b � 2c; a � cÞÞ z

In particular, the corresponding 3-manifolds M3ðrÞ are diffeomorphic, and the

corresponding groups pðrÞ are isomorphic.

Proof For the first diffeomorphism, proceed as shown in Fig. 9.

In the second diagram in Fig. 9, the middle circle is parallel to the b-framed

circle and has linking number b with it. If the a- and b-framed circles are oriented

clockwise, then the indicated 2-handle slide is a handle subtraction; the framing of

the a-framed circle changes to a þ b � 2c (see [15, p. 141]).

The isotopy of the middle diagram in Fig. 9 is explained in Fig. 10. The result of

Fig. 9 is a Kirby diagram for W4ðrða þ b � 2c; b; b � cÞÞ. For z, instead slide the b-

framed circle over the a-framed circle in a similar manner. The remaining claims in

the lemma follow from y and z by taking boundaries. h

Theorem 4.2 For each Artin presentation r listed in Theorem 3.3, M3ðrÞ is S3.

Furthermore, the corresponding closed 4-manifolds X4ðrÞ are as follows.

(4:1) X4ðrð1; 1; 0ÞÞ � CP2 # CP2 and X4ðrð1;�1; 0ÞÞ � CP2 # CP2

(4:2) X4ðrð2; 1; 1ÞÞ � CP2 # CP2

(4:3) X4ðrð5; 1; 2ÞÞ � X4ðrð5; 2; 3ÞÞ � CP2 # CP2

(4:4) X4ðrða; 0; 1ÞÞ � S2 � S2 if a is even

CP2 # CP2 if a is odd




(4:5) X4ðrðc þ 1; c � 1; cÞÞ � S2 � S2 if c is odd

CP2 # CP2 if c is even




The 4-manifolds for the remaining 3-tuples in Theorem 3.3 are determined

immediately from those just listed and Remark 2.13.

Proof First, 4.1 is clear since the Kirby diagrams are two-component unlinks with

framings �1. By y, W4ðrð2; 1; 1ÞÞ � W4ðrð1; 1; 0ÞÞ, and 4.2 now follows from 4.1.

Next, W4ðrð2; 1;�1ÞÞ � W4ðrð2; 1; 1ÞÞ by Remark 2.13, W4ðrð2; 1;�1ÞÞ �
W4ðrð5; 1; 2ÞÞ by y, and W4ðrð5; 1; 2ÞÞ � W4ðrð5; 2; 3ÞÞ by z. Therefore, 4.3 now

follows from 4.2. The Kirby diagram for W4ðrða; 0; 1Þ is a Hopf link with framings

Fig. 9 From the left: Kirby diagram for W4ðrða; b; cÞÞ, a 2-handle slide, and results of two isotopies
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a and 0; by [15, pp. 127, 130, & 144], the corresponding 4-manifold may be closed

up with a 4-handle yielding S2 � S2 if a is even and CP2 # CP2 if a is odd. This

proves 4.4. Lastly, z gives W4ðrðc þ 1; c � 1; cÞÞ � W4ðrðc þ 1; 0; 1ÞÞ, and 4.5 now

follows from 4.4. h

Corollary 4.3 The closed 4-manifolds appearing as X4ðrÞ for an Artin presentation

r on n-generators for n ¼ 0, 1, and 2 are exactly: S4 for n ¼ 0, CP2 and CP2 for

n ¼ 1, and CP2 # CP2, CP2 # CP2, CP2 # CP2, and S2 � S2 for n ¼ 2.

Remark 4.4 As noted by a referee, an alternative proof of Corollary 4.3 may be

obtained using Corollary 1.4 from Meier and Zupan [18]. Their approach utilizes

trisections of 4-manifolds and does not appear to provide alternative proofs of

Theorems 3.3 and 4.2 herein.

Acknowledgements The authors thank both referees for their helpful comments.

References
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